首页 > 其他分享 >零拷贝并非万能解决方案:重新定义数据传输的效率极限

零拷贝并非万能解决方案:重新定义数据传输的效率极限

时间:2023-09-16 18:11:59浏览次数:40  
标签:缓存 数据 PageCache 万能 内核 磁盘 数据传输 拷贝 pageCache

PageCache有什么作用?

在我们前面讲解零拷贝的内容时,我们了解到一个重要的概念,即内核缓冲区。那么,你可能会好奇内核缓冲区到底是什么?这个专有名词就是PageCache,也被称为磁盘高速缓存。也可以看下windows下的缓存区:如图所示:

image

零拷贝进一步提升性能的原因在于 PageCache 技术的使用。接下来,我们将详细探讨 PageCache 技术是如何实现这一目标的。

读写磁盘相比读写内存的速度慢太多了,但我们可以采取一种方法来改善这个问题,即将磁盘数据部分缓存到内核中,也就是将其存储在PageCache缓存区中。这个过程实际上是通过DMA(直接内存访问)控制器将磁盘数据拷贝到内核缓冲区中。

然而,需要注意的是,由于内存空间较磁盘空间有限,因此存在一系列算法来确保pageCache占用的内存空间不过大。我们在程序运行时都知道存在一种「局部性」,即刚刚被访问的数据在短时间内很可能再次被访问到,概率很高。因此,pageCache被用作缓存最近访问的数据。可以将pageCache看作是Redis,而磁盘则类似于MySQL。此外,pageCache还使用了内存淘汰机制,在内存空间不足时,会淘汰最近最久未被访问的缓存。

当在项目中使用 Redis 时,你一定知道如何使用它。和 Redis 类似, PageCache 的工作原理也是一样的。在进程需要访问数据时,它会首先检查 PageCache 是否已经存储了所需的数据。如果数据已经存在于 PageCache 中,内核会直接返回数据;如果数据未被缓存,则会从磁盘读取并将数据缓存到 PageCache 中,以备下次查询时使用。这种方式可以有效提高访问效率。

然而,pageCache还具有另一个优点,即预读功能。当访问并读取磁盘数据时,实际上需要定位磁盘中的位置。对于机械硬盘而言,这意味着磁头必须旋转到数据所在的扇区位置,然后开始顺序读取数据。然而,旋转磁头这种物理操作对计算机而言非常耗时。为了降低其影响,就出现了预读功能。通过预读功能,可以提前预读下一扇区的数据,减少等待磁头旋转的时间。

比如read方法需要读取32KB的字节的数据,使其在读取32KB字节数据后,继续读取后面的32-64KB,并将这一块数据一起缓存到pageCache缓冲区。这样做的好处在于,如果后续读取需要的数据在这块缓存中命中,那么读取成本会大幅降低。可以类比于redis中提前缓存一部分分布式唯一id用于插入数据库时的分配操作,这样就无需每次插入前都去获取一遍id。然而,一般情况下,为了避免可能出现的"毛刺"现象,我们通常会使用双缓存机制来处理。这个双缓存机制可以进一步优化读取操作的效果。

因此,PageCache的优点主要包括两个方面:首先,它能够将数据缓存到PageCache中;其次,它还利用了数据的预读功能。这两个操作极大地增强了读写磁盘时的性能。

但是,你可以想象一下如果你在传输大文件时比如好几个G的文件,如果还是使用零拷贝技术,内核还是会把他们放入pageCache缓存区,那这样不就产生问题了吗?你也可以想一下如果你往redis缓存中放了一个还几个G大小的value,而且还知道缓存了也没用,那不就相当于redis形同虚设了吗?把其他热点数据也弄没了,所以pageCache也有这样的一个问题,一是大文件抢占了pageCache的内存大小,这样做会导致其他热点数据无法存储在pageCache缓冲区中,从而降低磁盘的读写性能。此外,由于pageCache无法享受到缓存的好处,还会产生一个DMA数据拷贝的过程。

因此,最佳的优化方法是针对大文件传输时不使用pageCache,也就是不使用零拷贝技术。这是因为零拷贝技术会占用大量的内存空间,影响其他热点数据的访问优化。在高并发环境下,这几乎肯定会导致严重的性能问题。

大文件传输用什么方式实现?

那针对大文件的传输,我们应该使用什么方式呢?

让我们首先来观察最初的示例。当调用read方法读取文件时,进程实际上会被阻塞在read方法的调用处,因为它需要等待磁盘数据的返回。如下图所示:

image

在没有使用零拷贝技术的情况下,我们的用户进程使用同步IO的方式,它会一直阻塞等待系统调用返回数据。让我们回顾一下之前的具体流程:

  1. 应用程序发起read系统调用,用户进程开始进行阻塞等待结果返回。
  2. 此时内核会向磁盘发起I/O请求,磁盘收到请求后,开始寻址。当磁盘数据准备好后,就会向内核发起I/O中断,告知内核磁盘数据已经准备好。
  3. 内核收到中断信号后,将数据从磁盘控制器缓存区拷贝到pageCache缓冲区。
  4. 最后,内核会将pageCache中的数据再次拷贝到用户缓冲区,也就是用户态的内存中,然后read调用返回。

我们知道,既然有同步IO,就一定有异步IO来解决阻塞的问题。异步IO的工作方式如下图所示:

image

它将读操作分为两个部分:

  1. 第一部分是用户进程发起IO请求给内核,然后进程就不再关心该IO操作,而是继续处理其他任务。
  2. 第二部分是当内核接收到中断信号后,将数据直接拷贝到用户缓冲区,并通知用户进程操作成功。然后用户进程开始处理数据。

我们发现在这个过程中,并没有涉及到将数据拷贝到pageCache中,因此使用异步方式绕开了pageCache。直接IO是指绕过pageCache的IO请求,而缓存IO是指使用pageCache的IO请求。通常,对于磁盘而言,异步IO只支持直接IO。

正如前面所提到的,对于大文件的传输,不应该使用PageCache,因为这可能会导致PageCache被大文件占据,从而使得"热点"小文件无法充分利用PageCache的优势。

因此,在高并发的场景下,对于大文件传输,我们应该采用"异步I/O + 直接I/O"的方式来代替零拷贝技术。

直接I/O有两种常见的应用场景:

  1. 首先,如果应用程序已经实现了磁盘数据的缓存,就不需要再次使用PageCache进行缓存,这样可以减少额外的性能损耗。例如,在MySQL数据库中,可以通过参数设置来开启直接I/O,避免重复的缓存操作,默认情况下是不开启的。
  2. 其次,在传输大文件时,由于大文件很难命中PageCache的缓存,而且会占满PageCache导致"热点"文件无法充分利用缓存,增加了性能开销。因此,在这种情况下,应该使用直接I/O来绕过PageCache的缓存,以提高性能。

需要注意的是,直接I/O绕过了PageCache,因此无法享受内核的两项优化。

  1. 首先,内核的I/O调度算法会在PageCache中缓存尽可能多的I/O请求,然后将它们合并成一个更大的I/O请求发送给磁盘,以减少磁盘的寻址操作。
  2. 其次,内核会预读后续的I/O请求并将其放入PageCache中,同样是为了减少对磁盘的操作。这些优化在直接I/O中无法享受到。

于是,当我们需要传输大文件时,我们可以利用异步I/O和直接I/O的组合来实现无阻塞的文件读取。这种方式可以有效避免PageCache的影响,提高文件传输的效率。

因此,在文件传输过程中,我们可以根据文件的大小来选择不同的优化方式,以提高传输效率。对于大文件,使用异步I/O和直接I/O可以避免PageCache的影响;而对于小文件,则可以使用零拷贝技术来减少数据拷贝次数,提高传输速度。

在Nginx中,我们可以通过以下配置来根据文件的大小选择不同的优化方式:

location /video/ { 
    sendfile on; 
    aio on; 
    directio 1024m; 
}

在这个配置中,我们开启了sendfile选项,这允许Nginx使用零拷贝技术来传输文件。同时,我们也启用了aio选项,这使得Nginx可以使用异步I/O来提高文件传输的效率。

而通过设置directio参数为1024m,我们告诉Nginx当文件大小超过1024MB时,使用直接I/O来进行文件传输。这意味着在传输大文件时,Nginx将使用异步I/O和直接I/O的组合来实现无阻塞的文件读取,避免了PageCache的影响。而对于小文件,Nginx将继续使用零拷贝技术,以减少数据拷贝次数,提高传输速度。

总结

至此,我们的计算机基础专栏就结束了,不知道大家有没有发现,操作系统底层提供了丰富的解决方案来支持应用程序的复杂性和可扩展性。对于任何工作中遇到的问题,我们都可以从操作系统的角度寻找解决方法。

今天这一篇其实就是来打破零拷贝的方案神话的,没有一种技术是最好的,只有最合适的方法。我们需要根据具体的需求和情况来选择适合的解决方案,以提高应用程序的性能和可扩展性。谢谢大家的阅读和关注,希望这个专栏能对大家有所启发和帮助!

也请期待我的下一个专栏:【计算机网络篇】

标签:缓存,数据,PageCache,万能,内核,磁盘,数据传输,拷贝,pageCache
From: https://www.cnblogs.com/guoxiaoyu/p/17698096.html

相关文章

  • 35-列表-元素删除的3种方式-删除本质是数组元素拷贝
        删除和增加本质就是数组元素拷贝       ......
  • 如何提升代码质量,重构并非“万能药”
    随着编程技术的不断进步,编程语言变得越来越高级,功能封装也越来越完善。各种技术都在帮助程序员提高编写代码的效率。通过层层封装,程序员似乎不需要了解技术细节,只需逐行翻译需求内容即可。许多程序员不了解如何组织代码、提升运行效率以及底层基于的原理是什么,但是他们编写的代码......
  • C# 浅拷贝和深拷贝
    浅拷贝:只复制对象的基本类型、对象类型、仍然属于原引用,也称为影子克隆;深拷贝:不止复制对象的基本类,同时也复制原对象中的对象,完全就是新对象产生的,也称为深度克隆;浅拷贝示例类型基类System.Object已经为所有类型都实现了浅拷贝,类型所要做的就是公开一个复制的接口,而通常的,这......
  • 零拷贝技术:减少数据复制和上下文切换,提高网络传输效率(下)
    前章回顾在前一章节中,我们了解了DMA技术在文件传输中的重要性,并简要介绍了零拷贝技术。为了提高文件传输的性能,我们需要减少用户态与内核态之间的上下文切换次数以及内存拷贝次数。本章将深入探讨零拷贝技术的优化方法,让我们一起走进零拷贝的优化之路!如何优化文件传输的性能?当......
  • Kafka的零拷贝技术Zero-Copy
    传统的拷贝过程流程步骤:(1)操作系统将数据从磁盘文件中读取到内核空间的页面缓存;(2)应用程序将数据从内核空间读入用户空间缓冲区;(3)应用程序将读到数据写回内核空间并放入socket缓冲区;(4)操作系统将数据从socket缓冲区复制到网卡接口,此时数据才能通过网络发送。此过程涉及到4次上......
  • 零拷贝技术:减少数据复制和上下文切换,提高网络传输效率(上)
    零拷贝当涉及到网络传输中的零拷贝技术时,它在提高性能和效率方面扮演着重要的角色。在之前我们已经讨论了磁盘设备管理中的零拷贝技术,其中涉及到了DMA技术。现在,让我们来深入探讨一下网络传输中零拷贝技术的实现方式以及它的重要性。为什么要有DMA技术在没有DMA(直接内存访问)技......
  • JavaScript深拷贝的具体实现方法解析
    什么是深拷贝?深拷贝是指创建一个新对象或数组,使其与原始对象或数组具有相同的值,但是两者是完全独立的,互不影响。深拷贝不仅复制了对象或数组本身,还递归复制了其所有嵌套的对象和数组,确保所有层级的数据都是独立的。实现深拷贝的方法在JavaScript中,实现深拷贝的方法有很多种,下面将介......
  • cmd快速拷贝文件不计算文件
    例:将a文件夹内的所有内容(包括子文件夹)复制到b文件夹xcopya*b/y/e/i/q如xcopyE:*G:\test/y/e/i/q拷贝E盘文件到G盘下的test文件夹说明:/y:不弹出“确认是否覆写已存在目标文件”的提示/e:复制文件及子文件夹内所有内容,包括空文件夹(对比/s,/s不复制空文件夹)/i:如果b......
  • 用零拷贝技术优化adb install的执行时间
    背景某项目有对adbinstall优化的一个需求,项目的平台是Android10,内核版本是4.19,Data分区是F2FS文件系统。由于adbinstall是Android一个很标准的流程,网上有很多详细的介绍,本文不涉及这个具体流程。Adbinstall简单的流程是这样的,首先把安装包从PC传到设备中,然后再在设备中执行安......
  • 网络数据传输过程
    过程1、第一环节pc1将数据传输给SW1,形成MAC地址表,MAC地址与端口号一一对应2、第二环节AR1路由器出口g0/0/0,形成ARP解析表,MAC地址与ip地址一一对应3、第三环节AR1与AR2,形成IP路由表,源ip与目的ip4、第四环节目的ip地址,形成目的端的ARP地址信息表,目的IP和目的MAC5、第五环节目的MAC地......