首页 > 其他分享 >1348. Tweet Counts Per Frequency 推特文章的访问频率

1348. Tweet Counts Per Frequency 推特文章的访问频率

时间:2022-10-04 10:00:51浏览次数:52  
标签:1348 推特 TweetCounts recordTweet int Tweet tweetName time tweet3

1348. Tweet Counts Per Frequency Medium

A social media company is trying to monitor activity on their site by analyzing the number of tweets that occur in select periods of time. These periods can be partitioned into smaller time chunks based on a certain frequency (every minute, hour, or day).

For example, the period [10, 10000] (in seconds) would be partitioned into the following time chunks with these frequencies:

  • Every minute (60-second chunks): [10,69][70,129][130,189]...[9970,10000]
  • Every hour (3600-second chunks): [10,3609][3610,7209][7210,10000]
  • Every day (86400-second chunks): [10,10000]

Notice that the last chunk may be shorter than the specified frequency's chunk size and will always end with the end time of the period (10000 in the above example).

Design and implement an API to help the company with their analysis.

Implement the TweetCounts class:

  • TweetCounts() Initializes the TweetCounts object.
  • void recordTweet(String tweetName, int time) Stores the tweetName at the recorded time (in seconds).
  • List<Integer> getTweetCountsPerFrequency(String freq, String tweetName, int startTime, int endTime) Returns a list of integers representing the number of tweets with tweetName in each time chunk for the given period of time [startTime, endTime] (in seconds) and frequency freq.
    • freq is one of "minute""hour", or "day" representing a frequency of every minute, hour, or day respectively.

 

Example:

Input
["TweetCounts","recordTweet","recordTweet","recordTweet","getTweetCountsPerFrequency","getTweetCountsPerFrequency","recordTweet","getTweetCountsPerFrequency"]
[[],["tweet3",0],["tweet3",60],["tweet3",10],["minute","tweet3",0,59],["minute","tweet3",0,60],["tweet3",120],["hour","tweet3",0,210]]

Output
[null,null,null,null,[2],[2,1],null,[4]]

Explanation
TweetCounts tweetCounts = new TweetCounts();
tweetCounts.recordTweet("tweet3", 0);                              // New tweet "tweet3" at time 0
tweetCounts.recordTweet("tweet3", 60);                             // New tweet "tweet3" at time 60
tweetCounts.recordTweet("tweet3", 10);                             // New tweet "tweet3" at time 10
tweetCounts.getTweetCountsPerFrequency("minute", "tweet3", 0, 59); // return [2]; chunk [0,59] had 2 tweets
tweetCounts.getTweetCountsPerFrequency("minute", "tweet3", 0, 60); // return [2,1]; chunk [0,59] had 2 tweets, chunk [60,60] had 1 tweet
tweetCounts.recordTweet("tweet3", 120);                            // New tweet "tweet3" at time 120
tweetCounts.getTweetCountsPerFrequency("hour", "tweet3", 0, 210);  // return [4]; chunk [0,210] had 4 tweets

treemap是个好东西啊,可以用于value的排序

class TweetCounts {

    private Map<String, TreeMap<Integer, Integer>> map;
    
    public TweetCounts() {
        map = new HashMap<>();
    }
    
    public void recordTweet(String tweetName, int time) {
        
        if (!map.containsKey(tweetName)) map.put(tweetName, new TreeMap<>());
        TreeMap<Integer, Integer> tweetMap = map.get(tweetName);
        tweetMap.put(time, tweetMap.getOrDefault(time, 0) + 1);
    }
    
    public List<Integer> getTweetCountsPerFrequency(String freq, String tweetName, int startTime, int endTime) {
    
        if (!map.containsKey(tweetName)) return null;
        List<Integer> res = new LinkedList<>();
        
        int interval = 0, size = 0;
        if (freq.equals("minute")) {
            interval = 60;
        } else if (freq.equals("hour")) {
            interval = 3600;
        } else {
            interval = 86400;
        }
        size = ((endTime - startTime) / interval) + 1;
        
        int[] buckets = new int[size];
        
        TreeMap<Integer, Integer> tweetMap = map.get(tweetName);
        
        for (Map.Entry<Integer, Integer> entry : tweetMap.subMap(startTime, endTime + 1).entrySet()) {
            
            int index = (entry.getKey() - startTime) / interval;
            buckets[index] += entry.getValue();
        }
        
        for (int num : buckets) res.add(num);
        
        return res;
    }
}

/**
 * Your TweetCounts object will be instantiated and called as such:
 * TweetCounts obj = new TweetCounts();
 * obj.recordTweet(tweetName,time);
 * List<Integer> param_2 = obj.getTweetCountsPerFrequency(freq,tweetName,startTime,endTime);
 */

 




 

标签:1348,推特,TweetCounts,recordTweet,int,Tweet,tweetName,time,tweet3
From: https://www.cnblogs.com/immiao0319/p/16753288.html

相关文章

  • P5080 Tweetuzki 爱序列 题解
    题目传送门更好地阅读体验题目大意Tweetuzki有一个长度为\(n\)的序列\(a_1,a_2,\cdots,a_n\)。他希望找出一个最大的\(k\),满足在原序列中存在一些数\(b_1,b......