首页 > 其他分享 >Nutch相关框架安装使用最佳指南(转)

Nutch相关框架安装使用最佳指南(转)

时间:2023-09-15 13:34:56浏览次数:45  
标签:指南 Nutch 框架 ysc hadoop conf apache home nutch


Chinese installing and using instruction  -  The best guidance in installing and using  Nutch in China 

国内首套免费的《Nutch相关框架视频教程》        

土豆在线观看地址:http://www.tudou.com/home/item_u106249539s0p1.html 
超清原版下载地址:  http://pan.baidu.com/share/home?uk=3157595467 

下载 Nutch相关框架安装使用最佳指南.docx 

一、nutch1.2 
二、nutch1.5.1 
三、nutch2.0 
四、配置SSH 
五、安装Hadoop Cluster(伪分布式运行模式)并运行Nutch 
六、安装Hadoop Cluster(分布式运行模式)并运行Nutch 
七、配置Ganglia监控Hadoop集群和HBase集群 
八、Hadoop配置Snappy压缩 
九、Hadoop配置Lzo压缩 
十、配置zookeeper集群以运行hbase 
十一、配置Hbase集群以运行nutch-2.1(Region Servers会因为内存的问题宕机) 
十二、配置Accumulo集群以运行nutch-2.1(gora存在BUG) 
十三、配置Cassandra 集群以运行nutch-2.1(Cassandra 采用去中心化结构) 
十四、配置MySQL 单机服务器以运行nutch-2.1 
十五、nutch2.1 使用DataFileAvroStore作为数据源 
十六、nutch2.1 使用AvroStore作为数据源 
十七、配置SOLR 
十八、Nagios监控 
十九、配置Splunk 
二十、配置Pig 
二十一、配置Hive 
二十二、配置Hadoop2.x集群 



一、nutch1.2 
步骤和二大同小异,在步骤 5、配置构建路径 中需要多两个操作:在左部Package Explorer的 nutch1.2文件夹上单击右键 > Build Path > Configure Build Path...   >  选中Source选项 > Default output folder:修改nutch1.2/bin为nutch1.2/_bin,在左部Package Explorer的 nutch1.2文件夹下的bin文件夹上单击右键 > Team > 还原 
二中黄色背景部分是版本号的差异,红色部分是1.2版本没有的,绿色部分是不一样的地方,如下: 

1、Add JARs... >  nutch1.2 > lib ,选中所有的.jar文件 > OK 
2、crawl-urlfilter.txt 
3、将crawl -urlfilter.txt.template改名为crawl -urlfilter.txt 
4、修改crawl-urlfilter.txt,将 
# accept hosts in MY.DOMAIN.NAME 
+^http://([a-z0-9]*\.)*MY.DOMAIN.NAME/ 

# skip everything else 
-. 
5、cd /home/ysc/workspace/nutch1.2


nutch1.2是一个完整的搜索引擎,nutch1.5.1只是一个爬虫。nutch1.2可以把索引提交给SOLR,也可以直接生成LUCENE索引,nutch1.5.1则只能把索引提交给SOLR: 

1、cd /home/ysc 
2、wget http://mirrors.tuna.tsinghua.edu.cn/apache/tomcat/tomcat-7/v7.0.29/bin/apache-tomcat-7.0.29.tar.gz 
3、tar -xvf apache-tomcat-7.0.29.tar.gz 
4、在左部Package Explorer的 nutch1.2文件夹下的build.xml文件上单击右键 > Run As > Ant Build... > 选中war target > Run 
5、cd /home/ysc/workspace/nutch1.2/build 
6、unzip nutch-1.2.war -d nutch-1.2 
7、cp -r nutch-1.2 /home/ysc/apache-tomcat-7.0.29/webapps 
8、vi /home/ysc/apache-tomcat-7.0.29/webapps/nutch-1.2/WEB-INF/classes/nutch-site.xml 
加入以下配置: 
<property> 
  <name>searcher.dir</name> 
  <value>/home/ysc/workspace/nutch1.2/data</value> 
  <description> 
  Path to root of crawl.  This directory is searched (in 
  order) for either the file search-servers.txt, containing a list of 
  distributed search servers, or the directory "index" containing 
  merged indexes, or the directory "segments" containing segment 
  indexes. 
  </description> 
</property> 
9、vi /home/ysc/apache-tomcat-7.0.29/conf/server.xml 
将 
<Connector port="8080" protocol="HTTP/1.1" 
               connectionTimeout="20000" 
               redirectPort="8443"/> 
改为 
<Connector port="8080" protocol="HTTP/1.1" 
               connectionTimeout="20000" 
               redirectPort="8443" URIEncoding="utf-8"/> 

10、cd /home/ysc/apache-tomcat-7.0.29/bin 
11、./startup.sh 
12、访问:http://localhost:8080/nutch-1.2/



关于nutch1.2更多的BUG修复及资料,请参看我在CSDN发布的资源: 

二、nutch1.5.1 
1、下载并解压eclipse(集成开发环境) 
下载地址:http://www.eclipse.org/downloads/,下载Eclipse IDE for Java EE Developers 
2、安装Subclipse插件(SVN客户端) 
插件地址:http://subclipse.tigris.org/update_1.8.x, 
3、安装IvyDE插件(下载依赖Jar) 
插件地址:http://www.apache.org/dist/ant/ivyde/updatesite/ 
4、签出代码 
File > New > Project > SVN > 从SVN 检出项目 
创建新的资源库位置 > URL:https://svn.apache.org/repos/asf/nutch/tags/release-1.5.1/ > 选中URL > Finish 
弹出New Project向导,选择Java Project > Next,输入Project name:nutch1.5.1 > Finish 
5、配置构建路径 
在左部Package Explorer的 nutch1.5.1文件夹上单击右键 > Build Path > Configure Build Path...   
> 选中Source选项 > 选择src > Remove > Add Folder... > 选择src/bin, src/java, src/test 和 src/testresources(对于插件,需要选中src/plugin目录下的每一个插件目录下的src/java , src/test文件夹) > OK 
切换到Libraries选项 > 
Add Class Folder... > 选中nutch1.5.1/conf > OK 
Add JARs... >  需要选中src/plugin目录下的每一个插件目录下的lib目录下的jar文件 > OK 
Add Library... > IvyDE Managed Dependencies > Next > Main > Ivy File > Browse > ivy/ivy.xml > Finish 
切换到Order and Export选项> 
选中conf > Top 
6、执行ANT 
在左部Package Explorer的 nutch1.5.1文件夹下的build.xml文件上单击右键 > Run As > Ant Build 
在左部Package Explorer的 nutch1.5.1文件夹上单击右键 > Refresh 
在左部Package Explorer的 nutch1.5.1文件夹上单击右键 > Build Path > Configure Build Path...   >  选中Libraries选项 > Add Class Folder... >  选中build > OK 
7、修改配置文件nutch-site.xml 和regex-urlfilter.txt 
将nutch-site.xml.template改名为nutch-site.xml 
将regex-urlfilter.txt.template改名为regex-urlfilter.txt 
在左部Package Explorer的 nutch1.5.1文件夹上单击右键 > Refresh 
将如下配置项加入文件nutch-site.xml: 

<property> 
  <name>http.agent.name</name> 
  <value>nutch</value> 
</property> 
<property> 
  <name>http.content.limit</name> 
  <value>-1</value> 
</property>


修改regex-urlfilter.txt,将 
# accept anything else 
+. 
替换为: 
+^http://([a-z0-9]*\.)*news.163.com/ 
-. 
8、开发调试 
在左部Package Explorer的 nutch1.5.1文件夹上单击右键 > New > Folder > Folder name: urls 
在刚新建的urls目录下新建一个文本文件url,文本内容为:http://news.163.com 
打开src/java下的org.apache.nutch.crawl.Crawl.java类,单击右键Run As > Run Configurations > Arguments > 在Program arguments输入框中输入: urls -dir data -depth 3 > Run 
在需要调试的地方打上断点Debug As > Java Applicaton 
9、查看结果 
查看segments目录: 
打开src/java下的org.apache.nutch.segment.SegmentReader.java类 
单击右键Run As > Java Applicaton,控制台会输出该命令的使用方法 
单击右键Run As > Run Configurations > Arguments > 在Program arguments输入框中输入: -dump data/segments/*  data/segments/dump 
用文本编辑器打开文件data/segments/dump/dump查看segments中存储的信息 

查看crawldb目录: 
打开src/java下的org.apache.nutch.crawl.CrawlDbReader.java类 
单击右键Run As > Java Applicaton,控制台会输出该命令的使用方法 
单击右键Run As > Run Configurations > Arguments > 在Program arguments输入框中输入: data/crawldb -stats 
控制台会输出 crawldb统计信息 

查看linkdb目录: 
打开src/java下的org.apache.nutch.crawl.LinkDbReader.java类 
单击右键Run As > Java Applicaton,控制台会输出该命令的使用方法 
单击右键Run As > Run Configurations > Arguments > 在Program arguments输入框中输入: data/linkdb -dump data/linkdb_dump 
用文本编辑器打开文件data/linkdb_dump/part-00000查看linkdb中存储的信息 
10、全网分步骤抓取 

在左部Package Explorer的 nutch1.5.1文件夹下的build.xml文件上单击右键 > Run As > Ant Build 
cd  /home/ysc/workspace/nutch1.5.1/runtime/local 
#准备URL列表 
wget http://rdf.dmoz.org/rdf/content.rdf.u8.gz 
gunzip content.rdf.u8.gz 
mkdir dmoz 
bin/nutch org.apache.nutch.tools.DmozParser content.rdf.u8 -subset 5000 > dmoz/url 
#注入URL 
bin/nutch inject crawl/crawldb dmoz 
#生成抓取列表 
bin/nutch generate crawl/crawldb crawl/segments 
#第一次抓取 
s1=`ls -d crawl/segments/2* | tail -1` 
echo $s1 
#抓取网页 
bin/nutch fetch $s1 
#解析网页 
bin/nutch parse $s1 
#更新URL状态 
bin/nutch updatedb crawl/crawldb $s1 
#第二次抓取 
bin/nutch generate crawl/crawldb crawl/segments -topN 1000 
s2=`ls -d crawl/segments/2* | tail -1` 
echo $s2 
bin/nutch fetch $s2 
bin/nutch parse $s2 
bin/nutch updatedb crawl/crawldb $s2 
#第三次抓取 
bin/nutch generate crawl/crawldb crawl/segments -topN 1000 
s3=`ls -d crawl/segments/2* | tail -1` 
echo $s3 
bin/nutch fetch $s3 
bin/nutch parse $s3 
bin/nutch updatedb crawl/crawldb $s3 
#生成反向链接库 
bin/nutch invertlinks crawl/linkdb -dir crawl/segments



11、索引和搜索 
cd  /home/ysc/ 
wget http://mirror.bjtu.edu.cn/apache/lucene/solr/3.6.1/apache-solr-3.6.1.tgz 
tar -xvf apache-solr-3.6.1.tgz 
cd apache-solr-3.6.1 /example 

NUTCH_RUNTIME_HOME=/home/ysc/workspace/nutch1.5.1/runtime/local 
APACHE_SOLR_HOME=/home/ysc/apache-solr-3.6.1 

cp ${NUTCH_RUNTIME_HOME}/conf/schema.xml ${APACHE_SOLR_HOME}/example/solr/conf/ 
如果需要把网页内容存储到索引中,则修改 schema.xml文件中的 
<field name="content" type="text" stored="false" indexed="true"/> 
为 
<field name="content" type="text" stored="true" indexed="true"/> 

修改${APACHE_SOLR_HOME}/example/solr/conf/solrconfig.xml,将里面的<str name="df">text</str>都替换为<str name="df">content</str> 

把${APACHE_SOLR_HOME}/example/solr/conf/schema.xml中的 <schema name="nutch" version="1.5.1">修改为<schema name="nutch" version="1.5"> 
#启动SOLR服务器 
java -jar start.jar 

http://127.0.0.1:8983/solr/admin/ http://127.0.0.1:8983/solr/admin/stats.jsp 

cd  /home/ysc/workspace/nutch1.5.1/runtime/local 
#提交索引 
bin/nutch solrindex http://127.0.0.1:8983/solr/ crawl/crawldb -linkdb crawl/linkdb crawl/segments/* 

执行完整crawl: 
bin/nutch crawl urls -dir data -depth 2 -topN 100 -solr http://127.0.0.1:8983/solr/ 

使用以下命令分页查看所有索引的文档: 
http://127.0.0.1:8983/solr/select/?q=*%3A*&version=2.2&start=0&rows=10&indent=on 
标题包含“网易”的文档: 
http://127.0.0.1:8983/solr/select/?q=title%3A%E7%BD%91%E6%98%93&version=2.2&start=0&rows=10&indent=on 

12、查看索引信息 
cd  /home/ysc/ 
wget http://luke.googlecode.com/files/lukeall-3.5.0.jar 
java -jar lukeall-3.5.0.jar 
Path: /home/ysc/apache-solr-3.6.1/example/solr/data 

13、配置SOLR的中文分词 
cd  /home/ysc/ 
wget http://mmseg4j.googlecode.com/files/mmseg4j-1.8.5.zip 
unzip mmseg4j-1.8.5.zip -d  mmseg4j-1.8.5 

APACHE_SOLR_HOME=/home/ysc/apache-solr-3.6.1 
mkdir $APACHE_SOLR_HOME/example/solr/lib 
mkdir $APACHE_SOLR_HOME/example/solr/dic 
cp mmseg4j-1.8.5/mmseg4j-all-1.8.5.jar $APACHE_SOLR_HOME/example/solr/lib 
cp mmseg4j-1.8.5/data/*.dic $APACHE_SOLR_HOME/example/solr/dic 

将${APACHE_SOLR_HOME}/example/solr/conf/schema.xml文件中的 
<tokenizer class="solr.WhitespaceTokenizerFactory"/> 
和 
<tokenizer class="solr.StandardTokenizerFactory"/> 
替换为 
<tokenizer class="com.chenlb.mmseg4j.solr.MMSegTokenizerFactory" mode="complex" dicPath="/home/ysc/apache-solr-3.6.1/example/solr/dic"/> 

#重新启动SOLR服务器 
java -jar start.jar 

#重建索引,演示在开发环境中如何操作 
打开src/java下的org.apache.nutch.indexer.solr.SolrIndexer.java类 
单击右键Run As > Java Applicaton,控制台会输出该命令的使用方法 
单击右键Run As > Run Configurations > Arguments > 在Program arguments输入框中输入: http://127.0.0.1:8983/solr/  data/crawldb -linkdb  data/linkdb  data/segments/* 
使用luke重新打开索引就会发现分词起作用了 

三、nutch2.0 
nutch2.0和二中的nutch1.5.1的步骤相同,但在8、开发调试之前需要做以下配置: 
在左部Package Explorer的 nutch2.0文件夹上单击右键 > New > Folder > Folder name: data并指定数据存储方式,选如下之一: 
1、使用mysql作为数据存储 
  1)、在nutch2.0/conf/nutch-site.xml中加入如下配置: 

<property> 
  <name>storage.data.store.class</name> 
  <value>org.apache.gora.sql.store.SqlStore</value> 
</property>


  2)、将nutch2.0/conf/gora.properties文件中的  
  gora.sqlstore.jdbc.driver=org.hsqldb.jdbc.JDBCDriver 
gora.sqlstore.jdbc.url=jdbc:hsqldb:hsql://localhost/nutchtest 
gora.sqlstore.jdbc.user=sa 
gora.sqlstore.jdbc.password= 
  修改为 
  gora.sqlstore.jdbc.driver=com.mysql.jdbc.Driver 
gora.sqlstore.jdbc.url=jdbc:mysql://127.0.0.1:3306/nutch2 
gora.sqlstore.jdbc.user=root 
gora.sqlstore.jdbc.password=ROOT 
  3)、打开nutch2.0/ivy/ivy.xml中的mysql-connector-java依赖 
  4)、sudo apt-get install mysql-server 
2、使用hbase作为数据存储 
  1)、在nutch2.0/conf/nutch-site.xml中加入如下配置: 

<property> 
  <name>storage.data.store.class</name> 
  <value>org.apache.gora.hbase.store.HBaseStore</value> 
</property>


  2)、打开nutch2.0/ivy/ivy.xml中的gora-hbase依赖 
  3)、cd /home/ysc 
  4)、wget http://mirror.bit.edu.cn/apache/hbase/hbase-0.90.5/hbase-0.90.5.tar.gz 
  5)、tar -xvf hbase-0.90.5.tar.gz 
  6)、vi  hbase-0.90.5/conf/hbase-site.xml 
   加入以下配置: 

<property> 
    <name>hbase.rootdir</name> 
    <value>file:///home/ysc/hbase-0.90.5-database</value> 
  </property>


7)、hbase-0.90.5/bin/start-hbase.sh 
8)、将/home/ysc/hbase-0.90.5/hbase-0.90.5.jar加入开发环境eclipse的build path 

四、配置SSH 
三台机器 devcluster01, devcluster02, devcluster03,分别在每一台机器上面执行如下操作: 
1、sudo vi /etc/hosts 
加入以下配置: 
192.168.1.1 devcluster01 
192.168.1.2 devcluster02 
192.168.1.3 devcluster03 
2、安装SSH服务: 
  sudo apt-get install openssh-server 
3、(有提示的时候回车键确认) 
  ssh-keygen -t rsa 
  该命令会在用户主目录下创建 .ssh 目录,并在其中创建两个文件:id_rsa 私钥文件。是基于 RSA 算法创建。该私钥文件要妥善保管,不要泄漏。id_rsa.pub 公钥文件。和 id_rsa 文件是一对儿,该文件作为公钥文件,可以公开。 
4、cp .ssh/id_rsa.pub .ssh/authorized_keys 
把 三台机器 devcluster01, devcluster02, devcluster03 的文件/home/ysc/.ssh/authorized_keys的内容复制出来合并成一个文件并替换每一台机器上的/home/ysc/.ssh/authorized_keys文件 
在devcluster01上面执行时,以下两条命令的主机为02和03 
在devcluster02上面执行时,以下两条命令的主机为01和03 
在devcluster03上面执行时,以下两条命令的主机为01和02 
5、ssh-copy-id -i .ssh/id_rsa.pub ysc@ devcluster02 
6、ssh-copy-id -i .ssh/id_rsa.pub ysc@ devcluster03 
以上两条命令实际上是将 .ssh/id_rsa.pub 公钥文件追加到远程主机 server 的 user 主目录下的 .ssh/authorized_keys 文件中。 

五、安装Hadoop Cluster(伪分布式运行模式)并运行Nutch 
步骤和四大同小异,只需要1台机器 devcluster01,所以黄色背景部分全部设置为devcluster01,不需要第11步 

六、安装Hadoop Cluster(分布式运行模式)并运行Nutch 
三台机器 devcluster01, devcluster02, devcluster03(vi /etc/hostname) 
使用用户ysc登陆 devcluster01: 
1、cd /home/ysc 
2、wget http://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/hadoop-1.1.1/hadoop-1.1.1-bin.tar.gz 
3、tar -xvf hadoop-1.1.1-bin.tar.gz 
4、cd  hadoop-1.1.1 
5、vi conf/masters 
  替换内容为 : 
  devcluster01 
6、vi conf/slaves 
  替换内容为 : 
  devcluster02 
  devcluster03 
7、vi conf/core-site.xml 
  加入配置: 

<property> 
    <name>fs.default.name</name> 
    <value>hdfs://devcluster01:9000</value> 
    <description> 
       Where to find the Hadoop Filesystem through the network. 
       Note 9000 is not the default port. 
       (This is slightly changed from previous versions which didnt have "hdfs") 
    </description> 
  </property> 
    <property> 
     <name>hadoop.security.authorization</name> 
      <value>true</value> 
    </property>


编辑conf/hadoop-policy.xml 
8、vi conf/hdfs-site.xml 
  加入配置: 

<property> 
  <name>dfs.name.dir</name> 
  <value>/home/ysc/dfs/filesystem/name</value> 
</property> 

<property> 
  <name>dfs.data.dir</name> 
  <value>/home/ysc/dfs/filesystem/data</value> 
</property> 

<property> 
  <name>dfs.replication</name> 
  <value>1</value> 
</property> 

<property> 
  <name>dfs.block.size</name> 
  <value>671088640</value> 
  <description>The default block size for new files.</description> 
</property>


9、vi conf/mapred-site.xml 
  加入配置: 

<property> 
  <name>mapred.job.tracker</name> 
  <value>devcluster01:9001</value> 
  <description> 
    The host and port that the MapReduce job tracker runs at. If 
    "local", then jobs are run in-process as a single map and 
    reduce task. 
    Note 9001 is not the default port. 
  </description> 
</property> 

<property> 
  <name>mapred.reduce.tasks.speculative.execution</name> 
  <value>false</value> 
  <description>If true, then multiple instances of some reduce tasks 
               may be executed in parallel.</description> 
</property> 

<property> 
  <name>mapred.map.tasks.speculative.execution</name> 
  <value>false</value> 
  <description>If true, then multiple instances of some map tasks 
               may be executed in parallel.</description> 
</property> 

<property> 
  <name>mapred.child.java.opts</name> 
  <value>-Xmx2000m</value> 
</property> 

<property> 
  <name>mapred.tasktracker.map.tasks.maximum</name> 
  <value>4</value> 
  <description> 
    the core number of host 
  </description> 
</property> 

<property> 
  <name>mapred.map.tasks</name> 
  <value>4</value> 
</property> 

<property> 
  <name>mapred.tasktracker.reduce.tasks.maximum</name> 
  <value>4</value> 
    <description> 
    define mapred.map tasks to be number of slave hosts.the best number is the  number of slave hosts plus the core numbers of per host 
    </description> 
</property> 

<property> 
  <name>mapred.reduce.tasks</name> 
  <value>4</value> 
  <description> 
    define mapred.reduce tasks to be number of slave hosts.the best number is the  number of slave hosts plus the core numbers of per host 
  </description> 
</property> 

<property> 
  <name>mapred.output.compression.type</name> 
  <value>BLOCK</value> 
  <description>If the job outputs are to compressed as SequenceFiles, how should they be compressed? Should be one of NONE, RECORD or BLOCK. 
  </description> 
</property> 

<property> 
  <name>mapred.output.compress</name> 
  <value>true</value> 
  <description>Should the job outputs be compressed? 
  </description> 
</property> 

<property> 
  <name>mapred.compress.map.output</name> 
  <value>true</value> 
  <description>Should the outputs of the maps be compressed before being                sent across the network. Uses SequenceFile compression. 
  </description> 
</property> 

<property> 
  <name>mapred.system.dir</name> 
  <value>/home/ysc/mapreduce/system</value> 
</property> 

<property> 
  <name>mapred.local.dir</name> 
  <value>/home/ysc/mapreduce/local</value> 
</property>


10、vi conf/hadoop-env.sh 
  追加: 
export JAVA_HOME=/home/ysc/jdk1.7.0_05 
  export HADOOP_HEAPSIZE=2000 
  #替换掉默认的垃圾回收器,因为默认的垃圾回收器在多线程环境下会有更多的wait等待 
  export HADOOP_OPTS="-server -Xmn256m -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70" 
11、复制HADOOP文件 
  scp -r /home/ysc/hadoop-1.1.1 ysc@devcluster02:/home/ysc/hadoop-1.1.1 
  scp -r /home/ysc/hadoop-1.1.1 ysc@devcluster03:/home/ysc/hadoop-1.1.1 
12、sudo vi /etc/profile 
  追加并重启系统: 
  export PATH=/home/ysc/hadoop-1.1.1/bin:$PATH 
13、格式化名称节点并启动集群 
  hadoop namenode -format 
  start-all.sh 
14、cd /home/ysc/workspace/nutch1.5.1/runtime/deploy 
  mkdir urls 
  echo http://news.163.com > urls/url 
  hadoop dfs -put urls urls 
  bin/nutch crawl urls -dir data -depth 2 -topN 100 
15、访问 http://localhost:50030 可以查看 JobTracker 的运行状态。访问 http://localhost:50060 可以查看 TaskTracker 的运行状态。访问 http://localhost:50070 可以查看 NameNode 以及整个分布式文件系统的状态,浏览分布式文件系统中的文件以及 log 等 
16、通过stop-all.sh停止集群 
17、如果NameNode和SecondaryNameNode不在同一台机器上,则在SecondaryNameNode的conf/hdfs-site.xml文件中加入配置: 
  

<property> 
     <name>dfs.http.address</name> 
     <value>namenode:50070</value> 
   </property>



七、配置Ganglia监控Hadoop集群和HBase集群 
1、服务器端(安装到master devcluster01上) 
  1)、ssh devcluster01 
  2)、addgroup ganglia 
           adduser --ingroup ganglia ganglia 
  3)、sudo apt-get install  ganglia-monitor ganglia-webfront gmetad 
   //补充:在Ubuntu10.04上,ganglia-webfront这个package名字叫ganglia-webfrontend 
   //如果install出错,则运行sudo apt-get update,如果update出错,则删除出错路径 
  4)、vi /etc/ganglia/gmond.conf 
   先找到setuid = yes,改成setuid =no; 
   在找到cluster块中的name,改成name =”hadoop-cluster”; 
  5)、sudo apt-get install rrdtool 
  6)、vi /etc/ganglia/gmetad.conf 
   在这个配置文件中增加一些datasource,即其他2个被监控的节点,增加以下内容: 
   data_source “hadoop-cluster” devcluster01:8649 devcluster02:8649 devcluster03:8649 
   gridname "Hadoop" 
2、数据源端(安装到所有slaves上) 
  1)、ssh devcluster02 
   addgroup ganglia 
   adduser --ingroup ganglia ganglia 
   sudo apt-get install  ganglia-monitor 

  2)、ssh devcluster03 
   addgroup ganglia 
   adduser --ingroup ganglia ganglia 
   sudo apt-get install  ganglia-monitor 

  3)、ssh devcluster01 
   scp /etc/ganglia/gmond.conf devcluster02:/etc/ganglia/gmond.conf 
   scp /etc/ganglia/gmond.conf devcluster03:/etc/ganglia/gmond.conf 
3、配置WEB 
  1)、ssh devcluster01 
  2)、sudo ln -s /usr/share/ganglia-webfrontend /var/www/ganglia 
  3)、vi /etc/apache2/apache2.conf 
   添加: 
   ServerName devcluster01 
4、重启服务 
  1)、ssh devcluster02 
   sudo /etc/init.d/ganglia-monitor restart 
   ssh devcluster03 
   sudo /etc/init.d/ganglia-monitor restart 
  2)、ssh devcluster01 
   sudo /etc/init.d/ganglia-monitor restart 
   sudo /etc/init.d/gmetad restart 
   sudo /etc/init.d/apache2 restart 
5、访问页面 
  http:// devcluster01/ganglia 
6、集成hadoop 
  1)、ssh devcluster01 
  2)、cd /home/ysc/hadoop-1.1.1 
  3)、vi conf/hadoop-metrics2.properties 
  # 大于0.20以后的版本用ganglia31  *.sink.ganglia.class=org.apache.hadoop.metrics2.sink.ganglia.GangliaSink31 
  *.sink.ganglia.period=10 
  # default for supportsparse is false 
  *.sink.ganglia.supportsparse=true 
*.sink.ganglia.slope=jvm.metrics.gcCount=zero,jvm.metrics.memHeapUsedM=both 
*.sink.ganglia.dmax=jvm.metrics.threadsBlocked=70,jvm.metrics.memHeapUsedM=40 
  #广播IP地址,这是缺省的,统一设该值(只能用组播地址239.2.11.71) 
  namenode.sink.ganglia.servers=239.2.11.71:8649 
  datanode.sink.ganglia.servers=239.2.11.71:8649 
  jobtracker.sink.ganglia.servers=239.2.11.71:8649 
  tasktracker.sink.ganglia.servers=239.2.11.71:8649 
  maptask.sink.ganglia.servers=239.2.11.71:8649 
  reducetask.sink.ganglia.servers=239.2.11.71:8649 
  dfs.class=org.apache.hadoop.metrics.ganglia.GangliaContext31 
  dfs.period=10 
  dfs.servers=239.2.11.71:8649 
  mapred.class=org.apache.hadoop.metrics.ganglia.GangliaContext31 
  mapred.period=10 
  mapred.servers=239.2.11.71:8649 
  jvm.class=org.apache.hadoop.metrics.ganglia.GangliaContext31 
  jvm.period=10 
  jvm.servers=239.2.11.71:8649 
  4)、scp conf/hadoop-metrics2.properties root@devcluster02:/home/ysc/hadoop-1.1.1/conf/hadoop-metrics2.properties 
  5)、scp conf/hadoop-metrics2.properties root@devcluster03:/home/ysc/hadoop-1.1.1/conf/hadoop-metrics2.properties 
  6)、stop-all.sh 
  7)、start-all.sh 
7、集成hbase 
  1)、ssh devcluster01 
  2)、cd /home/ysc/hbase-0.92.2 
  3)、vi conf/hadoop-metrics.properties(只能用组播地址239.2.11.71) 
   hbase.extendedperiod = 3600 
   hbase.class=org.apache.hadoop.metrics.ganglia.GangliaContext31 
   hbase.period=10 
   hbase.servers=239.2.11.71:8649 
   jvm.class=org.apache.hadoop.metrics.ganglia.GangliaContext31 
   jvm.period=10 
   jvm.servers=239.2.11.71:8649 
   rpc.class=org.apache.hadoop.metrics.ganglia.GangliaContext31 
   rpc.period=10 
   rpc.servers=239.2.11.71:8649 
  4)、scp conf/hadoop-metrics.properties root@devcluster02:/home/ysc/ hbase-0.92.2/conf/hadoop-metrics.properties 
  5)、scp conf/hadoop-metrics.properties root@devcluster03:/home/ysc/ hbase-0.92.2/conf/hadoop-metrics.properties 
  6)、stop-hbase.sh 
  7)、start-hbase.sh 

八、Hadoop配置Snappy压缩 
1、wget http://snappy.googlecode.com/files/snappy-1.0.5.tar.gz 
2、tar -xzvf snappy-1.0.5.tar.gz 
3、cd snappy-1.0.5 
4、./configure 
5、make 
6、make install 
7、scp /usr/local/lib/libsnappy* devcluster01:/home/ysc/hadoop-1.1.1/lib/native/Linux-amd64-64/ 
scp /usr/local/lib/libsnappy* devcluster02:/home/ysc/hadoop-1.1.1/lib/native/Linux-amd64-64/ 
scp /usr/local/lib/libsnappy* devcluster03:/home/ysc/hadoop-1.1.1/lib/native/Linux-amd64-64/ 
8、vi /etc/profile 
  追加: 
  export LD_LIBRARY_PATH=/home/ysc/hadoop-1.1.1/lib/native/Linux-amd64-64 
9、修改mapred-site.xml 

<property> 
    <name>mapred.output.compression.type</name> 
    <value>BLOCK</value> 
    <description>If the job outputs are to compressed as SequenceFiles, how should 
        they be compressed? Should be one of NONE, RECORD or BLOCK. 
    </description> 
  </property> 

  <property> 
    <name>mapred.output.compress</name> 
    <value>true</value> 
    <description>Should the job outputs be compressed? 
    </description> 
  </property> 

  <property> 
    <name>mapred.compress.map.output</name> 
    <value>true</value> 
    <description>Should the outputs of the maps be compressed before being 
        sent across the network. Uses SequenceFile compression. 
    </description> 
  </property> 

  <property> 
    <name>mapred.map.output.compression.codec</name> 
    <value>org.apache.hadoop.io.compress.SnappyCodec</value> 
    <description>If the map outputs are compressed, how should they be 
        compressed? 
    </description> 
  </property> 

  <property> 
    <name>mapred.output.compression.codec</name> 
    <value>org.apache.hadoop.io.compress.SnappyCodec</value> 
    <description>If the job outputs are compressed, how should they be compressed? 
    </description> 
  </property>



九、Hadoop配置Lzo压缩 
1、wget http://www.oberhumer.com/opensource/lzo/download/lzo-2.06.tar.gz 
2、tar -zxvf lzo-2.06.tar.gz 
3、cd lzo-2.06 
4、./configure --enable-shared 
5、make 
6、make install 
7、scp /usr/local/lib/liblzo2.* devcluster01:/lib/x86_64-linux-gnu 
scp /usr/local/lib/liblzo2.* devcluster02:/lib/x86_64-linux-gnu 
scp /usr/local/lib/liblzo2.* devcluster03:/lib/x86_64-linux-gnu 
8、wget http://hadoop-gpl-compression.apache-extras.org.codespot.com/files/hadoop-gpl-compression-0.1.0-rc0.tar.gz 
9、tar -xzvf hadoop-gpl-compression-0.1.0-rc0.tar.gz 
10、cd hadoop-gpl-compression-0.1.0 
11、cp lib/native/Linux-amd64-64/* /home/ysc/hadoop-1.1.1/lib/native/Linux-amd64-64/ 
12、cp hadoop-gpl-compression-0.1.0.jar /home/ysc/hadoop-1.1.1/lib/(这里hadoop集群的版本要和compression使用的版本一致) 
13、scp -r /home/ysc/hadoop-1.1.1/lib devcluster02:/home/ysc/hadoop-1.1.1/ 
scp -r /home/ysc/hadoop-1.1.1/lib devcluster03:/home/ysc/hadoop-1.1.1/ 
14、vi /etc/profile 
  追加: 
  export LD_LIBRARY_PATH=/home/ysc/hadoop-1.1.1/lib/native/Linux-amd64-64 
15、修改core-site.xml 

<property> 
    <name>io.compression.codecs</name> 
    <value>com.hadoop.compression.lzo.LzoCodec,org.apache.hadoop.io.compress.DefaultCodec,org.apache.hadoop.io.compress.GzipCodec,org.apache.hadoop.io.compress.BZip2Codec,org.apache.hadoop.io.compress.SnappyCodec</value>
    <description>A list of the compression codec classes that can be used 
        for compression/decompression.</description> 
  </property> 

  <property> 
    <name>io.compression.codec.lzo.class</name> 
    <value>com.hadoop.compression.lzo.LzoCodec</value> 
  </property> 

  <property> 
    <name>fs.trash.interval</name> 
    <value>1440</value> 
    <description>Number of minutes between trash checkpoints. 
    If zero, the trash feature is disabled. 
    </description> 
  </property>


16、修改mapred-site.xml 

<property> 
    <name>mapred.output.compression.type</name> 
    <value>BLOCK</value> 
    <description>If the job outputs are to compressed as SequenceFiles, how should 
        they be compressed? Should be one of NONE, RECORD or BLOCK. 
    </description> 
  </property> 

  <property> 
    <name>mapred.output.compress</name> 
    <value>true</value> 
    <description>Should the job outputs be compressed? 
    </description> 
  </property> 

  <property> 
    <name>mapred.compress.map.output</name> 
    <value>true</value> 
    <description>Should the outputs of the maps be compressed before being 
        sent across the network. Uses SequenceFile compression. 
    </description> 
  </property> 

  <property> 
    <name>mapred.map.output.compression.codec</name> 
    <value>com.hadoop.compression.lzo.LzoCodec</value> 
    <description>If the map outputs are compressed, how should they be 
        compressed? 
    </description> 
  </property> 

  <property> 
    <name>mapred.output.compression.codec</name> 
    <value>com.hadoop.compression.lzo.LzoCodec</value> 
    <description>If the job outputs are compressed, how should they be compressed? 
    </description> 
  </property>



十、配置zookeeper集群以运行hbase 
1、ssh devcluster01 
2、cd /home/ysc 
3、wget http://mirror.bjtu.edu.cn/apache/zookeeper/stable/zookeeper-3.4.5.tar.gz 
4、tar -zxvf  zookeeper-3.4.5.tar.gz 
5、cd zookeeper-3.4.5 
6、cp conf/zoo_sample.cfg  conf/zoo.cfg 
7、vi conf/zoo.cfg 
  修改:dataDir=/home/ysc/zookeeper 
  添加: 
   server.1=devcluster01:2888:3888 
   server.2=devcluster02:2888:3888 
   server.3=devcluster03:2888:3888 
   maxClientCnxns=100 
8、scp -r  zookeeper-3.4.5  devcluster01:/home/ysc 
scp -r  zookeeper-3.4.5  devcluster02:/home/ysc 
scp -r  zookeeper-3.4.5  devcluster03:/home/ysc 
9、分别在三台机器上面执行: 
  ssh devcluster01 
  mkdir /home/ysc/zookeeper(注:dataDir是zookeeper的数据目录,需要手动创建) 
  echo 1 > /home/ysc/zookeeper/myid 
  ssh devcluster02 
  mkdir /home/ysc/zookeeper 
  echo 2 > /home/ysc/zookeeper/myid 
  ssh devcluster03 
  mkdir /home/ysc/zookeeper 
  echo 3 > /home/ysc/zookeeper/myid 
10、分别在三台机器上面执行: 
  cd /home/ysc/zookeeper-3.4.5 
  bin/zkServer.sh start 
  bin/zkCli.sh -server devcluster01:2181 
  bin/zkServer.sh status 

十一、配置Hbase集群以运行nutch-2.1(Region Servers会因为内存的问题宕机) 
1、nutch-2.1使用gora-0.2.1, gora-0.2.1使用hbase-0.90.4,hbase-0.90.4和hadoop-1.1.1不兼容,hbase-0.94.4和gora-0.2.1不兼容,hbase-0.92.2没问题。hbase存在系统时间同步的问题,并且误差要再30s以内。 
sudo apt-get install ntp 
sudo ntpdate -u 210.72.145.44 
2、HBase是数据库,会在同一时间使用很多的文件句柄。大多数linux系统使用的默认值1024是不能满足的。还需要修改 hbase 用户的 nproc,在压力下,如果过低会造成 OutOfMemoryError异常。 
vi /etc/security/limits.conf 
添加: 
   ysc soft nproc 32000 
   ysc hard nproc 32000 
   ysc soft nofile 32768 
   ysc hard nofile 32768 
vi /etc/pam.d/common-session 
添加: 
   session required  pam_limits.so 
3、登陆master,下载并解压hbase 
  ssh devcluster01 
  cd /home/ysc 
  wget http://apache.etoak.com/hbase/hbase-0.92.2/hbase-0.92.2.tar.gz 
  tar -zxvf hbase-0.92.2.tar.gz 
  cd hbase-0.92.2 
4、修改配置文件hbase-env.sh 
  vi conf/hbase-env.sh 
  追加: 
  export JAVA_HOME=/home/ysc/jdk1.7.0_05 
  export HBASE_MANAGES_ZK=false 
  export HBASE_HEAPSIZE=10000 
  #替换掉默认的垃圾回收器,因为默认的垃圾回收器在多线程环境下会有更多的wait等待 
  export HBASE_OPTS="-server -Xmn256m -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70" 
5、修改配置文件hbase-site.xml 
  vi conf/hbase-site.xml 

<property>  
   <name>hbase.rootdir</name>  
   <value>hdfs://devcluster01:9000/hbase</value>     
  </property> 
  <property>  
   <name>hbase.cluster.distributed</name>  
   <value>true</value>  
  </property>  
  <property>   
   <name>hbase.zookeeper.quorum</name>        
   <value>devcluster01,devcluster02,devcluster03</value>   
  </property> 
  <property> 
   <name>hfile.block.cache.size</name> 
   <value>0.25</value> 
   <description> 
    Percentage of maximum heap (-Xmx setting) to allocate to block cache 
    used by HFile/StoreFile. Default of 0.25 means allocate 25%. 
    Set to 0 to disable but it's not recommended. 
   </description> 
  </property> 
  <property> 
   <name>hbase.regionserver.global.memstore.upperLimit</name> 
   <value>0.4</value> 
   <description>Maximum size of all memstores in a region server before new 
     updates are blocked and flushes are forced. Defaults to 40% of heap 
   </description> 
  </property> 
    <property> 
   <name>hbase.regionserver.global.memstore.lowerLimit</name> 
   <value>0.35</value> 
   <description>When memstores are being forced to flush to make room in 
    memory, keep flushing until we hit this mark. Defaults to 35% of heap. 
    This value equal to hbase.regionserver.global.memstore.upperLimit causes 
    the minimum possible flushing to occur when updates are blocked due to 
    memstore limiting. 
   </description> 
    </property> 
  <property> 
   <name>hbase.hregion.majorcompaction</name> 
   <value>0</value> 
   <description>The time (in miliseconds) between 'major' compactions of all 
    HStoreFiles in a region.  Default: 1 day. 
    Set to 0 to disable automated major compactions. 
   </description> 
  </property>


6、修改配置文件regionservers 
  vi conf/regionservers 
  devcluster01 
  devcluster02 
  devcluster03 
7、因为HBase建立在Hadoop之上,Hadoop使用的hadoop*.jar和HBase使用的 必须 一致。所以要将 HBase lib 目录下的hadoop*.jar替换成Hadoop里面的那个,防止版本冲突。 
  cp  /home/ysc/hadoop-1.1.1/hadoop-core-1.1.1.jar  /home/ysc/hbase-0.92.2/lib 
  rm  /home/ysc/hbase-0.92.2/lib/hadoop-core-1.0.3.jar 
8、复制文件到regionservers 
  scp -r /home/ysc/hbase-0.92.2 devcluster01:/home/ysc 
  scp -r /home/ysc/hbase-0.92.2 devcluster02:/home/ysc 
  scp -r /home/ysc/hbase-0.92.2 devcluster03:/home/ysc 
9、启动hadoop并创建目录 
  hadoop fs -mkdir /hbase 
10、管理HBase集群: 
  启动初始 HBase 集群: 
   bin/start-hbase.sh 
  停止HBase 集群: 
   bin/stop-hbase.sh 
  启动额外备份主服务器,可以启动到 9 个备份服务器 (总数10 个): 
   bin/local-master-backup.sh start 1 
   bin/local-master-backup.sh start 2 3 
  启动更多 regionservers, 支持到 99 个额外regionservers (总100个): 
   bin/local-regionservers.sh start 1 
   bin/local-regionservers.sh start 2 3 4 5 
  停止备份主服务器: 
   cat /tmp/hbase-ysc-1-master.pid |xargs kill -9 
  停止单独 regionserver: 
   bin/local-regionservers.sh stop 1 
  使用HBase命令行模式: 
   bin/hbase shell 
11、web界面 
  http://devcluster01:60010 
  http://devcluster01:60030 
12、如运行nutch2.1则方法一: 
  cp conf/hbase-site.xml /home/ysc/nutch-2.1/conf 
  cd /home/ysc/nutch-2.1 
  ant 
  cd runtime/deploy 
  unzip -d apache-nutch-2.1 apache-nutch-2.1.job 
  rm  apache-nutch-2.1.job 
  cd apache-nutch-2.1 
  rm lib/hbase-0.90.4.jar 
  cp /home/ysc/hbase-0.92.2/hbase-0.92.2.jar  lib 
  zip -r ../apache-nutch-2.1.job ./* 
  cd .. 
  rm -r apache-nutch-2.1 
13、如运行nutch2.1则方法二: 
  cp conf/hbase-site.xml /home/ysc/nutch-2.1/conf 
  cd /home/ysc/nutch-2.1 
  cp /home/ysc/hbase-0.92.2/hbase-0.92.2.jar  lib 
  ant 
  cd runtime/deploy 
  zip -d apache-nutch-2.1.job lib/hbase-0.90.4.jar 

启用snappy压缩: 
1、vi conf/gora-hbase-mapping.xml 
  在family上面添加属性:compression="SNAPPY" 
2、mkdir /home/ysc/hbase-0.92.2/lib/native/Linux-amd64-64 
3、cp /home/ysc/hadoop-1.1.1/lib/native/Linux-amd64-64/* /home/ysc/hbase-0.92.2/lib/native/Linux-amd64-64 
4、vi /home/ysc/hbase-0.92.2/conf/hbase-site.xml 
  增加: 
               

<property> 
                        <name>hbase.regionserver.codecs</name> 
                        <value>snappy</value> 
                </property>




十二、配置Accumulo集群以运行nutch-2.1(gora存在BUG) 
1、wget http://apache.etoak.com/accumulo/1.4.2/accumulo-1.4.2-dist.tar.gz 
2、tar -xzvf accumulo-1.4.2-dist.tar.gz 
3、cd accumulo-1.4.2 
4、cp conf/examples/3GB/standalone/* conf 
5、vi conf/accumulo-env.sh 
  export HADOOP_HOME=/home/ysc/cluster3 
  export ZOOKEEPER_HOME=/home/ysc/zookeeper-3.4.5 
  export JAVA_HOME=/home/jdk1.7.0_01 
  export ACCUMULO_HOME=/home/ysc/accumulo-1.4.2 
6、vi conf/slaves 
  devcluster01 
  devcluster02 
  devcluster03 
7、vi conf/masters 
  devcluster01 
8、vi conf/accumulo-site.xml 

<property> 
    <name>instance.zookeeper.host</name> 
    <value>host6:2181,host8:2181</value> 
    <description>comma separated list of zookeeper servers</description> 
  </property> 

  <property> 
    <name>logger.dir.walog</name> 
    <value>walogs</value> 
    <description>The directory used to store write-ahead logs on the local filesystem. It is possible to specify a comma-separated list of directories.</description> 
  </property> 

  <property> 
    <name>instance.secret</name> 
    <value>ysc</value> 
    <description>A secret unique to a given instance that all servers must know in order to communicate with one another. 
        Change it before initialization. To change it later use ./bin/accumulo org.apache.accumulo.server.util.ChangeSecret [oldpasswd] [newpasswd], 
        and then update this file. 
    </description> 
  </property> 

  <property> 
    <name>tserver.memory.maps.max</name> 
    <value>3G</value> 
  </property> 

  <property> 
    <name>tserver.cache.data.size</name> 
    <value>50M</value> 
  </property> 

  <property> 
    <name>tserver.cache.index.size</name> 
    <value>512M</value> 
  </property> 

  <property> 
    <name>trace.password</name> 
    <!-- 
   change this to the root user's password, and/or change the user below 
     --> 
    <value>ysc</value> 
  </property> 

  <property> 
    <name>trace.user</name> 
    <value>root</value> 
  </property>


9、bin/accumulo init 
10、bin/start-all.sh 
11、bin/stop-all.sh 
12、web访问:http://devcluster01:50095/ 

修改nutch2.1: 
1、cd  /home/ysc/nutch-2.1 
2、vi  conf/gora.properties 
  增加: 
  gora.datastore.default=org.apache.gora.accumulo.store.AccumuloStore 
  gora.datastore.accumulo.mock=false 
  gora.datastore.accumulo.instance=accumulo 
  gora.datastore.accumulo.zookeepers=host6,host8 
  gora.datastore.accumulo.user=root 
  gora.datastore.accumulo.password=ysc 
3、vi  conf/nutch-site.xml 
  增加: 

<property> 
    <name>storage.data.store.class</name> 
    <value>org.apache.gora.accumulo.store.AccumuloStore</value> 
  </property>


4、vi ivy/ivy.xml 
  增加: 
  <dependency org="org.apache.gora" name="gora-accumulo" rev="0.2.1" conf="*->default" /> 
5、升级accumulo 
  cp /home/ysc/accumulo-1.4.2/lib/accumulo-core-1.4.2.jar  /home/ysc/nutch-2.1/lib 
  cp /home/ysc/accumulo-1.4.2/lib/accumulo-start-1.4.2.jar  /home/ysc/nutch-2.1/lib 
  cp /home/ysc/accumulo-1.4.2/lib/cloudtrace-1.4.2.jar  /home/ysc/nutch-2.1/lib 
6、ant 
7、cd runtime/deploy 
8、删除旧jar 
  zip -d apache-nutch-2.1.job lib/accumulo-core-1.4.0.jar 
  zip -d apache-nutch-2.1.job lib/accumulo-start-1.4.0.jar 
  zip -d apache-nutch-2.1.job lib/cloudtrace-1.4.2.jar 

十三、配置Cassandra 集群以运行nutch-2.1(Cassandra 采用去中心化结构) 
1、vi /etc/hosts(注意:需要登录到每一台机器上面,将localhost解析到实际地址) 
  192.168.1.1       localhost 
2、wget http://labs.mop.com/apache-mirror/cassandra/1.2.0/apache-cassandra-1.2.0-bin.tar.gz 
3、tar -xzvf  apache-cassandra-1.2.0-bin.tar.gz 
4、cd apache-cassandra-1.2.0 
5、vi conf/cassandra-env.sh 
  增加: 
  MAX_HEAP_SIZE="4G" 
  HEAP_NEWSIZE="800M" 
6、vi conf/log4j-server.properties 
  修改: 
  log4j.appender.R.File=/home/ysc/cassandra/system.log 
7、vi conf/cassandra.yaml 
  修改: 
  cluster_name: 'Cassandra  Cluster' 
  data_file_directories: 
      - /home/ysc/cassandra/data 
  commitlog_directory: /home/ysc/cassandra/commitlog 
  saved_caches_directory: /home/ysc/cassandra/saved_caches 

  - seeds: "192.168.1.1" 
  listen_address: 192.168.1.1 
  rpc_address: 192.168.1.1 

  thrift_framed_transport_size_in_mb: 1023 
  thrift_max_message_length_in_mb: 1024 
8、vi bin/stop-server 
  增加: 
  user=`whoami` 
  pgrep -u $user -f cassandra | xargs kill -9 
9、复制cassandra到其他节点: 
  cd .. 
  scp -r apache-cassandra-1.2.0 devcluster02:/home/ysc 
  scp -r apache-cassandra-1.2.0 devcluster03:/home/ysc 
  分别在devcluster02和devcluster03上面修改: 
  vi conf/cassandra.yaml 
   listen_address: 192.168.1.2 
   rpc_address: 192.168.1.2 
  vi conf/cassandra.yaml 
   listen_address: 192.168.1.3 
   rpc_address: 192.168.1.3 
10、分别在3个节点上面运行 
  bin/cassandra 
  bin/cassandra -f   参数 -f 的作用是让 Cassandra 以前端程序方式运行,这样有利于调试和观察日志信息,而在实际生产环境中这个参数是不需要的(即 Cassandra 会以 daemon 方式运行) 
11、bin/nodetool -host devcluster01 ring 
        bin/nodetool -host devcluster01 info 
12、bin/stop-server 
13、bin/cassandra-cli 

修改nutch2.1: 
1、cd  /home/ysc/nutch-2.1 
2、vi  conf/gora.properties 
  增加: 
  gora.cassandrastore.servers=host2:9160,host6:9160,host8:9160 
3、vi  conf/nutch-site.xml 
  增加: 

<property> 
    <name>storage.data.store.class</name> 
    <value>org.apache.gora.cassandra.store.CassandraStore</value> 
  </property>


4、vi ivy/ivy.xml 
  增加: 
  <dependency org="org.apache.gora" name="gora-cassandra" rev="0.2.1" conf="*->default" /> 
5、升级cassandra 
  cp /home/ysc/apache-cassandra-1.2.0/lib/apache-cassandra-1.2.0.jar  /home/ysc/nutch-2.1/lib 
  cp /home/ysc/apache-cassandra-1.2.0/lib/apache-cassandra-thrift-1.2.0.jar  /home/ysc/nutch-2.1/lib 
  cp /home/ysc/apache-cassandra-1.2.0/lib/jline-1.0.jar  /home/ysc/nutch-2.1/lib 
6、ant 
7、cd runtime/deploy 
8、删除旧jar 
  zip -d apache-nutch-2.1.job lib/cassandra-thrift-1.1.2.jar 
  zip -d apache-nutch-2.1.job lib/jline-0.9.1.jar 

十四、配置MySQL 单机服务器以运行nutch-2.1 
1、apt-get install mysql-server mysql-client 
2、vi /etc/mysql/my.cnf 
  修改: 
  bind-address            = 221.194.43.2 
  在[client]下增加: 
  default-character-set=utf8 
  在[mysqld]下增加: 
  default-character-set=utf8 
3、mysql –uroot –pysc 
  SHOW VARIABLES LIKE '%character%'; 
4、service mysql restart 
5、mysql –uroot –pysc 
  GRANT ALL PRIVILEGES ON *.* TO root@"%" IDENTIFIED BY "ysc"; 
6、vi conf/gora-sql-mapping.xml 
  修改字段的长度 

<primarykey column="id" length="333"/> 
  <field name="content" column="content" /> 
  <field name="text" column="text" length="19892"/>


7、启动nutch之后登陆mysql 
   ALTER TABLE webpage MODIFY COLUMN content MEDIUMBLOB; 
   ALTER TABLE webpage MODIFY COLUMN text MEDIUMTEXT; 
   ALTER TABLE webpage MODIFY COLUMN title MEDIUMTEXT; 
   ALTER TABLE webpage MODIFY COLUMN reprUrl MEDIUMTEXT; 
   ALTER TABLE webpage MODIFY COLUMN baseUrl MEDIUMTEXT; 
   ALTER TABLE webpage MODIFY COLUMN typ MEDIUMTEXT; 
   ALTER TABLE webpage MODIFY COLUMN inlinks MEDIUMBLOB; 
   ALTER TABLE webpage MODIFY COLUMN outlinks MEDIUMBLOB; 

修改nutch2.1: 
1、cd  /home/ysc/nutch-2.1 
2、vi  conf/gora.properties 
  增加: 
   gora.sqlstore.jdbc.driver=com.mysql.jdbc.Driver 
gora.sqlstore.jdbc.url=jdbc:mysql://host2:3306/nutch?createDatabaseIfNotExist=true&useUnicode=true&characterEncoding=utf8 
  gora.sqlstore.jdbc.user=root 
  gora.sqlstore.jdbc.password=ysc 
3、vi  conf/nutch-site.xml 
  增加: 

<property> 
    <name>storage.data.store.class</name> 
    <value>org.apache.gora.sql.store.SqlStore </value> 
  </property> 

  <property> 
    <name>encodingdetector.charset.min.confidence</name> 
    <value>1</value> 
    <description>A integer between 0-100 indicating minimum confidence value 
    for charset auto-detection. Any negative value disables auto-detection. 
    </description> 
  </property>


4、vi ivy/ivy.xml 
  增加: 

<dependency org="mysql" name="mysql-connector-java" rev="5.1.18" conf="*->default"/>



十五、nutch2.1 使用DataFileAvroStore作为数据源 
1、cd  /home/ysc/nutch-2.1 
2、vi  conf/gora.properties 
  增加: 
  gora.datafileavrostore.output.path=datafileavrostore 
  gora.datafileavrostore.input.path=datafileavrostore 
3、vi  conf/nutch-site.xml 
  增加: 

<property> 
    <name>storage.data.store.class</name> 
    <value>org.apache.gora.avro.store.DataFileAvroStore</value> 
  </property> 

  <property> 
    <name>encodingdetector.charset.min.confidence</name> 
    <value>1</value> 
    <description>A integer between 0-100 indicating minimum confidence value 
    for charset auto-detection. Any negative value disables auto-detection. 
    </description> 
  </property>




十六、nutch2.1 使用AvroStore作为数据源 
1、cd  /home/ysc/nutch-2.1 
2、vi  conf/gora.properties 
  增加: 
  gora.avrostore.codec.type=BINARY 
  gora.avrostore.input.path=avrostore 
  gora.avrostore.output.path=avrostore 
3、vi  conf/nutch-site.xml 
  增加: 

<property> 
    <name>storage.data.store.class</name> 
    <value>org.apache.gora.avro.store.AvroStore</value> 
  </property> 

  <property> 
    <name>encodingdetector.charset.min.confidence</name> 
    <value>1</value> 
    <description>A integer between 0-100 indicating minimum confidence value 
    for charset auto-detection. Any negative value disables auto-detection. 
    </description> 
  </property>





十七、配置SOLR 
配置tomcat: 
1、wget http://www.fayea.com/apache-mirror/tomcat/tomcat-7/v7.0.35/bin/apache-tomcat-7.0.35.tar.gz 
2、tar -xzvf apache-tomcat-7.0.35.tar.gz 
3、cd apache-tomcat-7.0.35 
4、vi conf/server.xml 
增加URIEncoding="UTF-8": 

<Connector port="8080" protocol="HTTP/1.1" 
       connectionTimeout="20000" 
       redirectPort="8443" URIEncoding="UTF-8"/>


5、mkdir conf/Catalina 
6、mkdir conf/Catalina/localhost 
7、vi conf/Catalina/localhost/solr.xml 
增加: 

<Context path="/solr"> 
   <Environment name="solr/home" type="java.lang.String" value="/home/ysc/solr/configuration/" override="false"/> 
  </Context>


8、cd .. 

下载SOLR: 
1、wget http://mirrors.tuna.tsinghua.edu.cn/apache/lucene/solr/4.1.0/solr-4.1.0.tgz 
2、tar -xzvf solr-4.1.0.tgz 

复制资源: 
1、mkdir /home/ysc/solr 
2、cp -r solr-4.1.0/example/solr  /home/ysc/solr/configuration 
3、unzip solr-4.1.0/example/webapps/solr.war -d /home/ysc/apache-tomcat-7.0.35/webapps/solr 

配置nutch: 
1、复制schema: 
  cp /home/ysc/nutch-1.6/conf/schema-solr4.xml /home/ysc/solr/configuration/collection1/conf/schema.xml 
2、vi /home/ysc/solr/configuration/collection1/conf/schema.xml 
  在<fields>下增加: 
  <field name="_version_" type="long" indexed="true" stored="true"/> 

配置中文分词: 
1、wget http://mmseg4j.googlecode.com/files/mmseg4j-1.9.1.v20130120-SNAPSHOT.zip 
2、unzip mmseg4j-1.9.1.v20130120-SNAPSHOT.zip 
3、cp mmseg4j-1.9.1-SNAPSHOT/dist/* /home/ysc/apache-tomcat-7.0.35/webapps/solr/WEB-INF/lib 
4、unzip mmseg4j-1.9.1-SNAPSHOT/dist/mmseg4j-core-1.9.1-SNAPSHOT.jar -d  mmseg4j-1.9.1-SNAPSHOT/dist/mmseg4j-core-1.9.1-SNAPSHOT 
5、mkdir /home/ysc/dic 
6、cp   mmseg4j-1.9.1-SNAPSHOT/dist/mmseg4j-core-1.9.1-SNAPSHOT/data/* /home/ysc/dic 
7、vi /home/ysc/solr/configuration/collection1/conf/schema.xml 
  将文件中的 
  <tokenizer class="solr.WhitespaceTokenizerFactory"/> 
  和 
  <tokenizer class="solr.StandardTokenizerFactory"/> 
  替换为 
  <tokenizer class="com.chenlb.mmseg4j.solr.MMSegTokenizerFactory" mode="complex" dicPath="/home/ysc/dic"/> 

配置tomcat本地库: 
1、wget http://apache.spd.co.il/apr/apr-1.4.6.tar.gz 
2、tar -xzvf apr-1.4.6.tar.gz 
3、cd apr-1.4.6 
4、./configure 
5、make 
6、make  install 

1、wget http://mirror.bjtu.edu.cn/apache/apr/apr-util-1.5.1.tar.gz 
2、tar -xzvf apr-util-1.5.1.tar.gz 
3、cd apr-util-1.5.1 
4、./configure --with-apr=/usr/local/apr 
5、make 
6、make  install 

1、wget http://mirror.bjtu.edu.cn/apache//tomcat/tomcat-connectors/native/1.1.24/source/tomcat-native-1.1.24-src.tar.gz 
2、tar -zxvf tomcat-native-1.1.24-src.tar.gz 
3、cd tomcat-native-1.1.24-src/jni/native 
4、./configure --with-apr=/usr/local/apr \ 
                --with-java-home=/home/ysc/jdk1.7.0_01 \ 
                --with-ssl=no \ 
                --prefix=/home/ysc/apache-tomcat-7.0.35 
5、make 
6、make  install 
7、vi /etc/profile 
增加: 
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/ysc/apache-tomcat-7.0.35/lib:/usr/local/apr/lib 
8、source /etc/profile 

启动tomcat: 
cd apache-tomcat-7.0.35 
bin/catalina.sh start 
http://devcluster01:8080/solr/ 

十八、Nagios监控 
服务端: 
1、apt-get install apache2 nagios3 nagios-nrpe-plugin 
  输入密码:nagiosadmin 
2、apt-get install nagios3-doc 
3、vi /etc/nagios3/conf.d/hostgroups_nagios2.cfg 
   define hostgroup { 
     hostgroup_name  nagios-servers 
     alias           nagios servers 
     members         devcluster01,devcluster02,devcluster03 
   } 
4、cp  /etc/nagios3/conf.d/localhost_nagios2.cfg /etc/nagios3/conf.d/devcluster01_nagios2.cfg 
  vi /etc/nagios3/conf.d/devcluster01_nagios2.cfg 
  替换: 
   g/localhost/s//devcluster01/g 
   g/127.0.0.1/s//192.168.1.1/g 
5、cp  /etc/nagios3/conf.d/localhost_nagios2.cfg /etc/nagios3/conf.d/devcluster02_nagios2.cfg 
  vi /etc/nagios3/conf.d/devcluster02_nagios2.cfg 
  替换: 
   g/localhost/s//devcluster02/g 
   g/127.0.0.1/s//192.168.1.2/g 
6、cp  /etc/nagios3/conf.d/localhost_nagios2.cfg /etc/nagios3/conf.d/devcluster03_nagios2.cfg 
  vi /etc/nagios3/conf.d/devcluster03_nagios2.cfg 
  替换: 
   g/localhost/s//devcluster03/g 
   g/127.0.0.1/s//192.168.1.3/g 

7、vi /etc/nagios3/conf.d/services_nagios2.cfg 
  将hostgroup_name改为nagios-servers 
  增加: 
 

# check that web services are running 
   define service { 
     hostgroup_name                  nagios-servers 
     service_description             HTTP 
     check_command                   check_http 
     use                             generic-service 
     notification_interval           0 ; set > 0 if you want to be renotified 
   } 

   # check that ssh services are running 
   define service { 
     hostgroup_name                  nagios-servers 
     service_description             SSH 
     check_command                   check_ssh 
     use                             generic-service 
     notification_interval           0 ; set > 0 if you want to be renotified 
   }


8、vi /etc/nagios3/conf.d/extinfo_nagios2.cfg 
  将hostgroup_name改为nagios-servers 
  增加: 

define hostextinfo{ 
     hostgroup_name   nagios-servers 
     notes            nagios-servers 
   #       notes_url        http://webserver.localhost.localdomain/hostinfo.pl?host=netware1 
     icon_image       base/debian.png 
     icon_image_alt   Debian GNU/Linux 
     vrml_image       debian.png 
     statusmap_image  base/debian.gd2 
     }


9、sudo /etc/init.d/nagios3 restart 
10、访问http://devcluster01/nagios3/ 
  用户名:nagiosadmin密码:nagiosadmin 

监控端: 
1、apt-get install nagios-nrpe-server 
2、vi /etc/nagios/nrpe.cfg 
  替换: 
  g/127.0.0.1/s//192.168.1.1/g 
3、sudo /etc/init.d/nagios-nrpe-server restart 

十九、配置Splunk 
1、wget http://download.splunk.com/releases/5.0.2/splunk/linux/splunk-5.0.2-149561-Linux-x86_64.tgz 
2、tar -zxvf splunk-5.0.2-149561-Linux-x86_64.tgz 
3、cd splunk 
4、bin/splunk start --answer-yes --no-prompt --accept-license 
5、访问http://devcluster01:8000 
  用户名:admin 密码:changeme 
6、添加数据 -> 从 UDP 端口 -> UDP 端口 *: 1688 -> 来源类型 从列表 log4j -> 保存 
7、配置hadoop 
  vi /home/ysc/hadoop-1.1.1/conf/log4j.properties 
  修改: 
   log4j.rootLogger=${hadoop.root.logger}, EventCounter, SYSLOG 
  增加: 
   log4j.appender.SYSLOG=org.apache.log4j.net.SyslogAppender  
   log4j.appender.SYSLOG.facility=local1  
   log4j.appender.SYSLOG.layout=org.apache.log4j.PatternLayout  
   log4j.appender.SYSLOG.layout.ConversionPattern=%p %c{2}: %m%n  
   log4j.appender.SYSLOG.SyslogHost=host6:1688 
   log4j.appender.SYSLOG.threshold=INFO  
   log4j.appender.SYSLOG.Header=true 
   log4j.appender.SYSLOG.FacilityPrinting=true  
8、配置hbase 
  vi /home/ysc/hbase-0.92.2/conf/log4j.properties 
  修改: 
   log4j.rootLogger=${hbase.root.logger},SYSLOG 
  增加: 
   log4j.appender.SYSLOG=org.apache.log4j.net.SyslogAppender  
   log4j.appender.SYSLOG.facility=local1  
   log4j.appender.SYSLOG.layout=org.apache.log4j.PatternLayout  
   log4j.appender.SYSLOG.layout.ConversionPattern=%p %c{2}: %m%n  
   log4j.appender.SYSLOG.SyslogHost=host6:1688 
   log4j.appender.SYSLOG.threshold=INFO  
   log4j.appender.SYSLOG.Header=true 
   log4j.appender.SYSLOG.FacilityPrinting=true 
9、配置nutch 
  vi /home/lanke/ysc/nutch-2.1-hbase/conf/log4j.properties 
  修改: 
   log4j.rootLogger=INFO,DRFA,SYSLOG 
  增加: 
   log4j.appender.SYSLOG=org.apache.log4j.net.SyslogAppender  
   log4j.appender.SYSLOG.facility=local1  
   log4j.appender.SYSLOG.layout=org.apache.log4j.PatternLayout  
   log4j.appender.SYSLOG.layout.ConversionPattern=%p %c{2}: %m%n  
   log4j.appender.SYSLOG.SyslogHost=host6:1688 
   log4j.appender.SYSLOG.threshold=INFO  
   log4j.appender.SYSLOG.Header=true 
   log4j.appender.SYSLOG.FacilityPrinting=true 
10、启动hadoop和hbase 
  start-all.sh 
  start-hbase.sh 

二十、配置Pig 
1、wget http://labs.mop.com/apache-mirror/pig/pig-0.11.0/pig-0.11.0.tar.gz 
2、tar -xzvf pig-0.11.0.tar.gz 
3、cd pig-0.11.0 
4、vi /etc/profile 
  增加: 
  export PIG_HOME=/home/ysc/pig-0.11.0 
  export PATH=$PIG_HOME/bin:$PATH 
5、source /etc/profile 
6、cp conf/log4j.properties.template conf/log4j.properties 
7、vi conf/log4j.properties 
8、pig 

二十一、配置Hive 
1、wget http://mirrors.cnnic.cn/apache/hive/hive-0.10.0/hive-0.10.0.tar.gz 
2、tar -xzvf hive-0.10.0.tar.gz 
3、cd hive-0.10.0 
4、vi /etc/profile 
  增加: 
  export HIVE_HOME=/home/ysc/hive-0.10.0 
  export PATH=$HIVE_HOME/bin:$PATH 
5、source /etc/profile 
6、cp conf/hive-log4j.properties.template conf/hive-log4j.properties 
7、vi conf/hive-log4j.properties 
  替换: 
  log4j.appender.EventCounter=org.apache.hadoop.metrics.jvm.EventCounter 
  为: 
  log4j.appender.EventCounter=org.apache.hadoop.log.metrics.EventCounter 


二十二、配置Hadoop2.x集群 
1、wget http://labs.mop.com/apache-mirror/hadoop/common/hadoop-2.0.2-alpha/hadoop-2.0.2-alpha.tar.gz 
2、tar -xzvf hadoop-2.0.2-alpha.tar.gz 
3、cd hadoop-2.0.2-alpha 
4、vi etc/hadoop/hadoop-env.sh 
  追加: 
export JAVA_HOME=/home/ysc/jdk1.7.0_05 
  export HADOOP_HEAPSIZE=2000 
5、vi etc/hadoop/core-site.xml 
 

<property> 
   <name>fs.defaultFS</name> 
   <value>hdfs://devcluster01:9000</value> 
   <description> 
      Where to find the Hadoop Filesystem through the network. 
      Note 9000 is not the default port. 
      (This is slightly changed from previous versions which didnt have "hdfs") 
   </description> 
   </property> 
   <property> 
    <name>io.file.buffer.size</name> 
    <value>131072</value> 
    <description>The size of buffer for use in sequence files. 
    The size of this buffer should probably be a multiple of hardware 
    page size (4096 on Intel x86), and it determines how much data is 
    buffered during read and write operations.</description> 
  </property>


6、vi etc/hadoop/mapred-site.xml 

<property> 
    <name>mapreduce.framework.name</name> 
    <value>yarn</value> 
  </property> 

  <property> 
    <name>mapred.job.reduce.input.buffer.percent</name> 
    <value>1</value> 
    <description>The percentage of memory- relative to the maximum heap size- to 
    retain map outputs during the reduce. When the shuffle is concluded, any 
    remaining map outputs in memory must consume less than this threshold before 
    the reduce can begin. 
    </description> 
  </property> 

  <property> 
    <name>mapred.job.shuffle.input.buffer.percent</name> 
    <value>1</value> 
    <description>The percentage of memory to be allocated from the maximum heap 
    size to storing map outputs during the shuffle. 
    </description> 
  </property> 

  <property> 
    <name>mapred.inmem.merge.threshold</name> 
    <value>0</value> 
    <description>The threshold, in terms of the number of files 
    for the in-memory merge process. When we accumulate threshold number of files 
    we initiate the in-memory merge and spill to disk. A value of 0 or less than 
    0 indicates we want to DON'T have any threshold and instead depend only on 
    the ramfs's memory consumption to trigger the merge. 
    </description> 
  </property> 

  <property> 
    <name>io.sort.factor</name> 
    <value>100</value> 
    <description>The number of streams to merge at once while sorting 
    files.  This determines the number of open file handles.</description> 
  </property> 

  <property> 
    <name>io.sort.mb</name> 
    <value>240</value> 
    <description>The total amount of buffer memory to use while sorting 
    files, in megabytes.  By default, gives each merge stream 1MB, which 
    should minimize seeks.</description> 
  </property> 
    <property> 
      <name>mapred.map.output.compression.codec</name> 
      <value>org.apache.hadoop.io.compress.SnappyCodec</value> 
      <description>If the map outputs are compressed, how should they be 
          compressed? 
      </description> 
    </property> 

    <property> 
      <name>mapred.output.compression.codec</name> 
      <value>org.apache.hadoop.io.compress.SnappyCodec</value> 
      <description>If the job outputs are compressed, how should they be compressed? 
      </description> 
    </property> 
  <property> 
    <name>mapred.output.compression.type</name> 
    <value>BLOCK</value> 
    <description>If the job outputs are to compressed as SequenceFiles, how should 
        they be compressed? Should be one of NONE, RECORD or BLOCK. 
    </description> 
  </property> 
  <property> 
    <name>mapred.child.java.opts</name> 
    <value>-Xmx2000m</value> 
  </property> 

  <property> 
    <name>mapred.output.compress</name> 
    <value>true</value> 
    <description>Should the job outputs be compressed? 
    </description> 
  </property> 

  <property> 
    <name>mapred.compress.map.output</name> 
    <value>true</value> 
    <description>Should the outputs of the maps be compressed before being 
        sent across the network. Uses SequenceFile compression. 
    </description> 
  </property> 

  <property> 
    <name>mapred.tasktracker.map.tasks.maximum</name> 
    <value>5</value> 
  </property> 

  <property> 
    <name>mapred.map.tasks</name> 
    <value>15</value> 
  </property> 

  <property> 
    <name>mapred.tasktracker.reduce.tasks.maximum</name> 
    <value>5</value> 
   <description> 
   define mapred.map tasks to be number of slave hosts.the best number is the  number of slave hosts plus the core numbers of per host 
   </description> 
  </property> 

  <property> 
    <name>mapred.reduce.tasks</name> 
    <value>15</value> 
    <description> 
   define mapred.reduce tasks to be number of slave hosts.the best number is the  number of slave hosts plus the core numbers of per host 
    </description> 
  </property> 
  <property> 
    <name>mapred.system.dir</name> 
    <value>/home/ysc/mapreduce/system</value> 
  </property> 

  <property> 
    <name>mapred.local.dir</name> 
    <value>/home/ysc/mapreduce/local</value> 
  </property> 

  <property> 
    <name>mapreduce.job.counters.max</name> 
    <value>12000</value> 
    <description>Limit on the number of counters allowed per job. 
    </description> 
  </property>


7、vi etc/hadoop/yarn-site.xml 
 

<property>    
    <name>yarn.resourcemanager.resource-tracker.address</name>   
    <value>devcluster01:8031</value> 
   </property>   
   <property>  
    <name>yarn.resourcemanager.address</name>     
    <value>devcluster01:8032</value>  
   </property> 
   <property>    
    <name>yarn.resourcemanager.scheduler.address</name>  
    <value>devcluster01:8030</value> 
   </property> 
   <property>  
    <name>yarn.resourcemanager.admin.address</name>  
    <value>devcluster01:8033</value>   
   </property>   
   <property>    
    <name>yarn.resourcemanager.webapp.address</name>    
    <value>devcluster01:8088</value>  
   </property>  
   <property>   
    <description>Classpath for typical applications.</description> 
    <name>yarn.application.classpath</name>  
    <value>       
    $HADOOP_CONF_DIR,      
    $HADOOP_COMMON_HOME/*,$HADOOP_COMMON_HOME/lib/*,    
    $HADOOP_HDFS_HOME/*,$HADOOP_HDFS_HOME/lib/*,       
    $HADOOP_MAPRED_HOME/*,$HADOOP_MAPRED_HOME/lib/*,   
    $YARN_HOME/*,$YARN_HOME/lib/*   
    </value>  
   </property> 
   <property>  
    <name>yarn.nodemanager.aux-services</name>  
    <value>mapreduce.shuffle</value>  
   </property>   
   <property>    
    <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>  
    <value>org.apache.hadoop.mapred.ShuffleHandler</value>  
   </property>  
   <property>   
    <name>yarn.nodemanager.local-dirs</name>     <value>/home/ysc/h2/data/1/yarn/local,/home/ysc/h2/data/2/yarn/local,/home/ysc/h2/data/3/yarn/local</value>  
   </property> 
   <property> 
    <name>yarn.nodemanager.log-dirs</name>      <value>/home/ysc/h2/data/1/yarn/logs,/home/ysc/h2/data/2/yarn/logs,/home/ysc/h2/data/3/yarn/logs</value>  
   </property>  
   <property>   
    <description>Where to aggregate logs</description> 
    <name>yarn.nodemanager.remote-app-log-dir</name>    
    <value>/home/ysc/h2/var/log/hadoop-yarn/apps</value> 
   </property>    
   <property>    
    <name>mapreduce.jobhistory.address</name>   
    <value>devcluster01:10020</value> 
   </property>   
   <property>    
    <name>mapreduce.jobhistory.webapp.address</name>   
    <value>devcluster01:19888</value> 
   </property>


8、vi etc/hadoop/hdfs-site.xml 

<property>  
   <name>dfs.permissions.superusergroup</name>  
   <value>root</value> 
  </property> 
  <property> 
    <name>dfs.name.dir</name> 
    <value>/home/ysc/dfs/filesystem/name</value> 
  </property> 
  <property> 
    <name>dfs.data.dir</name> 
    <value>/home/ysc/dfs/filesystem/data</value> 
  </property> 
  <property> 
    <name>dfs.replication</name> 
    <value>3</value> 
  </property> 
  <property> 
    <name>dfs.block.size</name> 
    <value>6710886400</value> 
    <description>The default block size for new files.</description> 
  </property>


9、启动hadoop 
  bin/hdfs namenode -format 
  sbin/start-dfs.sh 
  sbin/start-yarn.sh 
10、访问管理页面 
  http://devcluster01:8088 
  http://devcluster01:50070

标签:指南,Nutch,框架,ysc,hadoop,conf,apache,home,nutch
From: https://blog.51cto.com/u_2650279/7479993

相关文章

  • .Net使用 Tesseract 框架识别简单验证码
    1.图片验证码生成publicclassCaptchaGenerator{publicstaticstringGetRandomAuthcode(intlength){stringchkCode=string.Empty;//验证码的字符集,去掉了一些容易混淆的字符char[]character={'0',......
  • 软件测试|深入解析Docker Run命令:创建和启动容器的完全指南
    简介Docker是一种流行的容器化平台,用于构建、分发和运行应用程序。其中一个最基本且重要的Docker命令是dockerrun,用于创建和启动容器。本文将详细解析dockerrun命令的用途、参数和示例,帮助您全面掌握创建和启动容器的过程。dockerrun在Docker中,容器是运行应用程序的独立环......
  • 软件测试|使用PyMySQL访问MySQL数据库的详细指南
    简介PyMySQL是Python中流行的MySQL数据库驱动程序,它提供了便捷的方法来连接、查询和更新MySQL数据库。本文将为您提供使用PyMySQL访问MySQL数据库的详细指南,包括安装PyMySQL、连接数据库、执行查询和更新操作等。获取更多技术资料,请点击!环境准备在开始之前,您需要确保已经安装......
  • 软件测试|Docker Kill/Pause/Unpause命令详细使用指南
    简介Docker是一种流行的容器化平台,提供了各种命令和功能来管理和操作容器。本文将详细介绍Docker中的三个重要命令:kill、pause和unpause。我们将深入了解它们的作用、用法和示例,帮助您更好地理解和使用这些命令。什么是DockerKill/Pause/Unpause命令?Docker提供了几个与容器生......
  • 软件测试|Docker exec命令详细使用指南
    简介Dockerexec命令是Docker提供的一个强大工具,用于在正在运行的容器中执行命令。本文将详细介绍Dockerexec命令的用法和示例,帮助大家更好地理解和使用这个命令。Docker是一种流行的容器化平台,允许我们在容器中运行应用程序。有时候,在容器内执行命令可以帮助我们调试、排查问......
  • Spring框架开发WebService的环境搭建
    如题。这里只介绍基本的运行环境搭建。所需IDE或编辑器,自行准备。笔者所有的职业开发者朋友都建议使用IDEA旗舰版(收费)。建议次选VsCode。eclipse、myeclipse这些再次。环境:1、JDK20。javaer都清楚的东西,不赘述。2、maven。很流行的依赖管理工具,在学习开发中顺手拿来编译运行也......
  • 软件测试|Python Selenium 库安装使用指南
    简介Selenium是一个用于自动化浏览器操作的强大工具,它可以模拟用户在浏览器中的行为,例如点击、填写表单、导航等。在本指南中,我们将详细介绍如何安装和使用Python的Selenium库。安装Selenium库使用以下命令可以通过pip安装Selenium库:pipinstallselenium安装WebDriver......
  • 第5课:基于案例一节课贯通Spark Streaming流计算框架的运行源码
    本节课基于案例试图通过一节课贯通SparkStreaming流计算框架的运行源码,这节课建立在之前4节课的基础之上,本节内容分成2部分:1,在线动态计算分类最热门商品案例回顾与演示2,基于案例贯通SparkStreaming的运行源码。在线动态计算分类最热门商品案例回顾与演示这个基于之前的课程内容......
  • 第15节课:AI框架图片识别之数据解析、Network初始化、Sigmoid激活函数及Feedforward函
    第15节课:AI框架图片识别之数据解析、Network初始化、Sigmoid激活函数及Feedforward函数详细内容请关注微信公众号:从零起步学习人工智能 https://mp.weixin.qq.com/s?__biz=MzU3OTc4OTEzNw==&mid=2247483658&idx=1&sn=3d8b40ce71e84c717428d4a1994581e0&chksm=fd618934ca1600229308......
  • 滑动窗口框架:来自 labuladong
    /*滑动窗口算法框架*/voidslidingWindow(strings,stringt){unordered_map<char,int>need,window;for(charc:t)need[c]++;intleft=0,right=0;intvalid=0;while(right<s.size()){//c是将移入窗口的字符......