Abstract
本文:
Task: 1. prove invariance-inducing regularizers can increase predictive accuracy for worst-case spatial transformations 2. prove that on adversarial examples from transformation groups in the infinite data limit robust training can also improve accuracy on test set
实验:
数据集:CIFAR-10, SVHN, CIFAR-100
- 证明在标准data augmentation或者adversarial training上添加regularization能够减少relative robust error 20%(CIFAR-10)且overhead最小
- 效果甚至好于人工调整过的模型
- 在SVHN上同时提高了test set的精确度