首页 > 其他分享 >Flink 1.17教程:任务槽Task Slots和并行度的关系

Flink 1.17教程:任务槽Task Slots和并行度的关系

时间:2023-09-02 11:38:15浏览次数:52  
标签:slot 1.17 Task job 并行度 任务 算子 执行


任务槽Task Slots

在 Apache Flink 中,任务槽(Task Slots)是指可用于执行并行任务的资源单元。每个任务槽可以看作是一个可用的执行线程或处理单元,用于并行执行作业的不同部分。

通俗来说,可以将任务槽想象成一个工作台,而每个工作台上都可以同时进行一项任务。任务槽的数量决定了同时可以执行的任务数量。

任务槽的作用和应用场景:

  1. 并行执行:任务槽允许在同一时刻并行执行多个任务。每个任务槽可以独立地执行一个任务或算子,从而有效地利用计算资源,提高作业的并行度和整体处理能力。
  2. 任务分配和负载均衡:任务槽可以用于将不同的任务或算子分配到不同的资源上。通过合理分配任务槽,可以实现负载均衡,确保任务在可用资源之间均匀分配,避免资源浪费和瓶颈。
  3. 容错和高可用性:任务槽还可以提供容错和高可用性。如果一个任务槽上的任务或算子失败,系统可以将其重新分配到其他可用的任务槽上,从而实现故障恢复和保证作业的持续执行。

总的来说,任务槽在 Apache Flink 中扮演着并行执行任务的角色,可以提高作业的并行度和整体处理能力。它们用于任务分配、负载均衡以及容错和高可用性的实现。

Flink 1.17教程:任务槽Task Slots和并行度的关系_并行度

任务槽的共享组

Flink 1.17教程:任务槽Task Slots和并行度的关系_大数据_02

默认情况下,Flink是允许子任务共享slot的。如果我们保持sink任务并行度为1不变,而作业提交时设置全局并行度为6,那么前两个任务节点就会各自有6个并行子任务,整个流处理程序则有13个子任务。如上图所示,只要属于同一个作业,那么对于不同任务节点(算子)的并行子任务,就可以放到同一个slot上执行。所以对于第一个任务节点source→map,它的6个并行子任务必须分到不同的slot上,而第二个任务节点keyBy/window/apply的并行子任务却可以和第一个任务节点共享slot。

package com.atguigu.wc;
 
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
 
/**
 * TODO DataStream实现Wordcount:读socket(无界流)
 *
 * @author
 * @version 1.0
 */
public class SlotSharingGroupDemo {
    public static void main(String[] args) throws Exception {
        // TODO 1.创建执行环境
		// StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // IDEA运行时,也可以看到webui,一般用于本地测试
        // 需要引入一个依赖 flink-runtime-web
        StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration());
 
        // 在idea运行,不指定并行度,默认就是 电脑的 线程数
        env.setParallelism(1);
 
        // TODO 2.读取数据:socket
        DataStreamSource<String> socketDS = env.socketTextStream("hadoop102", 7777);
 
        // TODO 3.处理数据: 切换、转换、分组、聚合
        SingleOutputStreamOperator<Tuple2<String,Integer>> sum = socketDS
                .flatMap(
                        (String value, Collector<String> out) -> {
                            String[] words = value.split(" ");
                            for (String word : words) {
                                out.collect(word);
                            }
                        }
                )
                .returns(Types.STRING)
                .map(word -> Tuple2.of(word, 1)).slotSharingGroup("aaa")
                .returns(Types.TUPLE(Types.STRING,Types.INT))
                .keyBy(value -> value.f0)
                .sum(1);
 
 
        // TODO 4.输出
        sum.print();
 
        // TODO 5.执行
        env.execute();
    }
}
 
/**
 1、slot特点:
    1)均分隔离内存,不隔离cpu
    2)可以共享:
          同一个job中,不同算子的子任务 才可以共享 同一个slot,同时在运行的前提是,属于同一个 slot共享组,默认都是“default”
 2、slot数量 与 并行度 的关系
    1)slot是一种静态的概念,表示最大的并发上限
       并行度是一种动态的概念,表示 实际运行 占用了 几个
    2)要求: slot数量 >= job并行度(算子最大并行度),job才能运行
       TODO 注意:如果是yarn模式,动态申请
         --> TODO 申请的TM数量 = job并行度 / 每个TM的slot数,向上取整
       比如session: 一开始 0个TaskManager,0个slot
         --> 提交一个job,并行度10
            --> 10/3,向上取整,申请4个tm,
            --> 使用10个slot,剩余2个slot
 */

slot与并行度的关系&演示

任务槽和并行度的关系

任务槽和并行度都跟程序的并行执行有关,但两者是完全不同的概念。简单来说任务槽是静态的概念,是指TaskManager具有的并发执行能力,可以通过参数taskmanager.numberOfTaskSlots进行配置;而并行度是动态概念,也就是TaskManager运行程序时实际使用的并发能力,可以通过参数parallelism.default进行配置。

1、slot特点:
1)均分隔离内存,不隔离cpu
2)可以共享:
同一个job中,不同算子的子任务 才可以共享 同一个slot,同时在运行的前提是,属于同一个 slot共享组,默认都是“default”
2、slot数量 与 并行度 的关系
1)slot是一种静态的概念,表示最大的并发上限
并行度是一种动态的概念,表示 实际运行 占用了 几个
2)要求: slot数量 >= job并行度(算子最大并行度),job才能运行
注意:如果是yarn模式,动态申请
--> 申请的TM数量 = job并行度 / 每个TM的slot数,向上取整
比如session: 一开始 0个TaskManager,0个slot
--> 提交一个job,并行度10
--> 10/3,向上取整,申请4个tm,
--> 使用10个slot,剩余2个slot

并行度是指在作业执行过程中同时执行的任务或算子的数量。它决定了作业可以同时处理多少个数据分片或并行操作。并行度可以在作业级别、算子级别或子任务级别进行设置。

任务槽则是实际的执行资源单元,用于并行执行任务或算子。每个任务槽可以看作一个可用的执行线程或处理单元。

关系如下:

  1. 并行度和任务槽数量:并行度通常与任务槽的数量相关联。如果并行度大于任务槽的数量,那么任务将被分配到多个任务槽中执行,从而实现并行处理。如果并行度小于或等于任务槽的数量,那么每个任务或算子可以在一个单独的任务槽中执行。
  2. 负载均衡:任务槽的数量可以用于实现任务的负载均衡。如果并行度大于任务槽的数量,系统会尽量将任务均匀分配到可用的任务槽中,以实现资源的充分利用和负载的平衡。
  3. 容错性:任务槽的数量也与容错性相关。如果某个任务槽上的任务或算子失败,系统可以将其重新分配到其他可用的任务槽上,从而实现故障恢复和保证作业的持续执行。

综上所述,任务槽和并行度密切相关,任务槽提供了实际的执行资源单元,用于并行执行任务或算子。并行度决定了同时执行的任务或算子的数量,而任务槽的数量可以影响并行度的设置、负载均衡和容错性。


标签:slot,1.17,Task,job,并行度,任务,算子,执行
From: https://blog.51cto.com/zhangxueliang/7331327

相关文章

  • Flink 1.17教程:Standalone会话模式运行时架构及并行度
    运行时架构——Standalone会话模式为例并行度并行度是指在计算过程中同时执行多个任务或操作的能力。在ApacheFlink中,并行度是指同时执行作业中的多个任务或算子的能力。并行度的引入是为了解决以下问题:提高计算速度:通过将任务拆分成多个子任务,并行执行它们,可以大大提高计算速度......
  • Flink 1.17教程:历史服务器History Server
    K8S运行模式容器化部署是如今业界流行的一项技术,基于Docker镜像运行能够让用户更加方便地对应用进行管理和运维。容器管理工具中最为流行的就是Kubernetes(k8s),而Flink也在最近的版本中支持了k8s部署模式。基本原理与YARN是类似的,具体配置可以参见官网说明,这里我们就不做过多讲解了......
  • Flink 1.17教程:并行度设置&优先级
    并行度设置&优先级并行度(Parallelism)并行度的设置在Flink中,可以用不同的方法来设置并行度,它们的有效范围和优先级别也是不同的。代码中设置我们在代码中,可以很简单地在算子后跟着调用setParallelism()方法,来设置当前算子的并行度:stream.map(word->Tuple2.of(word,1L)).setParall......
  • Flink 1.17教程:算子链Operator Chain
    算子链OperatorChain在ApacheFlink中,算子链(OperatorChaining)是将多个操作符(算子)连接在一起形成一个链式结构的优化技术。算子链的作用是将多个操作符合并为一个单一的任务单元,以减少通信开销、提高执行效率和减少资源占用。通俗来说,算子链的作用可以比喻为将多个操作合并成一......
  • Flink 1.17教程:Hadoop yarn会话运行模式
    YARN运行模式_环境准备YARN上部署的过程是:客户端把Flink应用提交给Yarn的ResourceManager,Yarn的ResourceManager会向Yarn的NodeManager申请容器。在这些容器上,Flink会部署JobManager和TaskManager的实例,从而启动集群。Flink会根据运行在JobManger上的作业所需要的Slot数量动态分配T......
  • Flink 1.17教程:部署模式介绍及Standalone运行模式
    部署模式介绍在一些应用场景中,对于集群资源分配和占用的方式,可能会有特定的需求。Flink为各种场景提供了不同的部署模式,主要有以下三种:会话模式(SessionMode)、单作业模式(Per-JobMode)、应用模式(ApplicationMode)。它们的区别主要在于:集群的生命周期以及资源的分配方式;以及应用的mai......
  • Flink 1.17教程:Hadoop yarn运行模式——单作业模式和应用模式
    YARN运行模式_单作业模式单作业模式部署(1)执行命令提交作业YARN运行模式_应用模式应用模式同样非常简单,与单作业模式类似,直接执行flinkrun-application命令即可。如:bin/flinkrun-application-tyarn-application-ccom.atguigu.wc.WordCountStreamUnboundedDemo./FlinkTutorial......
  • Flink 1.17教程:命令行提交作业jar
    命令行提交作业bin/flinkrun-mnode001:8081-ccom.atguigu.wc.WordCountStreamUnboundedDemo../jar/FlinkTutorial-1.17-1.0-SNAPSHOT.jar连接成功Lastlogin:FriJun1614:44:012023from192.168.10.1[atguigu@node001~]$cd/opt/module/flink/flink-1.17.0/[atgu......
  • Flink 1.17教程:集群搭建、运行模式(standalone/yarn/k8s)及历史服务器
    集群角色集群启动如果是部署在本地,本地访问,无需进行任何配置,直接启动即可。如果是部署在服务器,需要远程访问,则需要将flink.conf中的localhost修改为服务器IP地址或是0.0.0.0节点服务器hadoop102hadoop103hadoop104角色JobManagerTaskManagerTaskManagerTaskManager[atguigu@node001......
  • Flink 1.17教程:WebUI提交作业及打jar包maven插件配置
    打jar包maven插件配置<build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-shade-plugin</artifactId><version>3.2.4</version>......