首页 > 其他分享 >Kubernetes三主两从集群搭建

Kubernetes三主两从集群搭建

时间:2023-08-28 23:36:56浏览次数:43  
标签:三主 Kubernetes kubernetes -- master01 192.168 etc 集群 k8s

安装前必读

请不要使用带中文的服务器和克隆的虚拟机

生产环境建议使用二进制安装方式

请将该文档复制一份,然后进行更改安装,并记录每一个步骤的返回信息,有问题可以直接发送部署文档进行问答,解决更加迅

kubeadm高可用安装k8s集群最新版

基本环境配置

Kubeadm安装方式自1.14版本以后,安装方法几乎没有任何变化,此文档可以尝试安装最新的k8s集群,centos采用的是7.x版本

K8S官网:https://kubernetes.io/docs/setup/

最新版高可用安装:https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/

表1-1 高可用Kubernetes集群规划

主机名

IP地址

说明

k8s-master01 ~ 03

192.168.0.107 ~ 203

master节点 * 3

k8s-master-lb

192.168.0.236

keepalived虚拟IP

k8s-node01 ~ 02

192.168.0.110 ~ 205

worker节点 * 2

 

配置信息

备注

系统版本

CentOS 7.9

Docker版本

19.03.x

Pod网段

172.168.0.0/12

Service网段

10.96.0.0/12

VIP(虚拟IP)不要和公司内网IP重复,首先去ping一下,不通才可用。VIP需要和主机在同一个局域网内!

公有云上搭建VIP是公有云的负载均衡的IP,比如阿里云的内网SLB的地址,腾讯云内网ELB的地址

所有节点配置hosts,修改/etc/hosts如下:

 

[root@k8s-master01 ~]# cat /etc/hosts

192.168.0.107 k8s-master01

192.168.0.108 k8s-master02

192.168.0.109 k8s-master03
192.168.0.236 k8s-master-lb # 如果不是高可用集群,该IP为Master01的IP

192.168.0.110 k8s-node01

192.168.0.111 k8s-node02

 

 

CentOS 7安装yum源如下:

curl -o /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.repo

yum install -y yum-utils device-mapper-persistent-data lvm2

yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo

cat <<EOF > /etc/yum.repos.d/kubernetes.repo

[kubernetes]

name=Kubernetes

baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64/

enabled=1

gpgcheck=1

repo_gpgcheck=1

gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg

EOF

sed -i -e '/mirrors.cloud.aliyuncs.com/d' -e '/mirrors.aliyuncs.com/d' /etc/yum.repos.d/CentOS-Base.repo

必备工具安装

yum install wget jq psmisc vim net-tools telnet yum-utils device-mapper-persistent-data lvm2 git -y

所有节点关闭防火墙、selinux、dnsmasq、swap。服务器配置如下:

systemctl disable --now firewalld

systemctl disable --now dnsmasq

systemctl disable --now NetworkManager

setenforce 0

sed -i 's#SELINUX=enforcing#SELINUX=disabled#g' /etc/sysconfig/selinux

sed -i 's#SELINUX=enforcing#SELINUX=disabled#g' /etc/selinux/config

关闭swap分区

swapoff -a && sysctl -w vm.swappiness=0

sed -ri '/^[^#]*swap/s@^@#@' /etc/fstab

安装ntpdate

rpm -ivh http://mirrors.wlnmp.com/centos/wlnmp-release-centos.noarch.rpm

yum install ntpdate -y

所有节点同步时间。时间同步配置如下:

ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

echo 'Asia/Shanghai' >/etc/timezone

ntpdate time2.aliyun.com

# 加入到crontab

*/5 * * * * /usr/sbin/ntpdate time2.aliyun.com

所有节点配置limit:

ulimit -SHn 65535

vim /etc/security/limits.conf

# 末尾添加如下内容

* soft nofile 655360

* hard nofile 131072

* soft nproc 655350

* hard nproc 655350

* soft memlock unlimited

* hard memlock unlimited

Master01节点免密钥登录其他节点,安装过程中生成配置文件和证书均在Master01上操作,集群管理也在Master01上操作,阿里云或者AWS上需要单独一台kubectl服务器。密钥配置如下:

ssh-keygen -t rsa

for i in k8s-master01 k8s-master02 k8s-master03 k8s-node01 k8s-node02;do ssh-copy-id -i .ssh/id_rsa.pub $i;done

下载安装所有的源码文件:

cd /root/ ; git clone https://github.com/dotbalo/k8s-ha-install.git

所有节点升级系统并重启,此处升级没有升级内核,下节会单独升级内核:

yum update -y --exclude=kernel* && reboot #CentOS7需要升级,CentOS8可以按需升级系统

内核配置

CentOS7 需要升级内核至4.18+,本地升级的版本为4.19

在master01节点下载内核:(购买架构师课程的可以从百度网盘下载)

cd /root

wget http://193.49.22.109/elrepo/kernel/el7/x86_64/RPMS/kernel-ml-devel-4.19.12-1.el7.elrepo.x86_64.rpm

wget http://193.49.22.109/elrepo/kernel/el7/x86_64/RPMS/kernel-ml-4.19.12-1.el7.elrepo.x86_64.rpm

从master01节点传到其他节点:

for i in k8s-master02 k8s-master03 k8s-node01 k8s-node02;do scp kernel-ml-4.19.12-1.el7.elrepo.x86_64.rpm kernel-ml-devel-4.19.12-1.el7.elrepo.x86_64.rpm $i:/root/ ; done

所有节点安装内核

cd /root && yum localinstall -y kernel-ml*

所有节点更改内核启动顺序

grub2-set-default 0 && grub2-mkconfig -o /etc/grub2.cfg

grubby --args="user_namespace.enable=1" --update-kernel="$(grubby --default-kernel)"

检查默认内核是不是4.19

[root@k8s-master02 ~]# grubby --default-kernel

/boot/vmlinuz-4.19.12-1.el7.elrepo.x86_64

所有节点重启,然后检查内核是不是4.19

[root@k8s-master02 ~]# uname -a

Linux k8s-master02 4.19.12-1.el7.elrepo.x86_64 #1 SMP Fri Dec 21 11:06:36 EST 2018 x86_64 x86_64 x86_64 GNU/Linux

所有节点安装ipvsadm:

yum install ipvsadm ipset sysstat conntrack libseccomp -y

所有节点配置ipvs模块,在内核4.19+版本nf_conntrack_ipv4已经改为nf_conntrack, 4.18以下使用nf_conntrack_ipv4即可:

modprobe -- ip_vs

modprobe -- ip_vs_rr

modprobe -- ip_vs_wrr

modprobe -- ip_vs_sh

modprobe -- nf_conntrack

vim /etc/modules-load.d/ipvs.conf
# 加入以下内容

ip_vs

ip_vs_lc

ip_vs_wlc

ip_vs_rr

ip_vs_wrr

ip_vs_lblc

ip_vs_lblcr

ip_vs_dh

ip_vs_sh

ip_vs_fo

ip_vs_nq

ip_vs_sed

ip_vs_ftp

ip_vs_sh

nf_conntrack

ip_tables

ip_set

xt_set

ipt_set

ipt_rpfilter

ipt_REJECT

ipip

然后执行systemctl enable --now systemd-modules-load.service即可

开启一些k8s集群中必须的内核参数,所有节点配置k8s内核:

cat <<EOF > /etc/sysctl.d/k8s.conf

net.ipv4.ip_forward = 1

net.bridge.bridge-nf-call-iptables = 1

net.bridge.bridge-nf-call-ip6tables = 1

fs.may_detach_mounts = 1

vm.overcommit_memory=1

vm.panic_on_oom=0

fs.inotify.max_user_watches=89100

fs.file-max=52706963

fs.nr_open=52706963

net.netfilter.nf_conntrack_max=2310720

net.ipv4.tcp_keepalive_time = 600

net.ipv4.tcp_keepalive_probes = 3

net.ipv4.tcp_keepalive_intvl =15

net.ipv4.tcp_max_tw_buckets = 36000

net.ipv4.tcp_tw_reuse = 1

net.ipv4.tcp_max_orphans = 327680

net.ipv4.tcp_orphan_retries = 3

net.ipv4.tcp_syncookies = 1

net.ipv4.tcp_max_syn_backlog = 16384

net.ipv4.ip_conntrack_max = 65536

net.ipv4.tcp_max_syn_backlog = 16384

net.ipv4.tcp_timestamps = 0

net.core.somaxconn = 16384

EOF

sysctl --system

所有节点配置完内核后,重启服务器,保证重启后内核依旧加载

reboot

lsmod | grep --color=auto -e ip_vs -e nf_conntrack

---

基本组件安装

本节主要安装的是集群中用到的各种组件,比如Docker-ce、Kubernetes各组件等。

所有节点安装Docker-ce 19.03

yum install docker-ce-19.03.* -y

温馨提示:

由于新版kubelet建议使用systemd,所以可以把docker的CgroupDriver改成systemd

mkdir /etc/docker

cat > /etc/docker/daemon.json <<EOF

{

"exec-opts": ["native.cgroupdriver=systemd"]

}

EOF

所有节点设置开机自启动Docker:

systemctl daemon-reload && systemctl enable --now docker

安装k8s组件:

yum list kubeadm.x86_64 --showduplicates | sort -r

所有节点安装最新版本kubeadm:

yum install kubeadm -y

默认配置的pause镜像使用gcr.io仓库,国内可能无法访问,所以这里配置Kubelet使用阿里云的pause镜像:

cat >/etc/sysconfig/kubelet<<EOF

KUBELET_EXTRA_ARGS="--cgroup-driver=systemd --pod-infra-container-image=registry.cn-hangzhou.aliyuncs.com/google_containers/pause-amd64:3.2"

EOF

设置Kubelet开机自启动:

systemctl daemon-reload

systemctl enable --now kubelet

高可用组件安装

(注意:如果不是高可用集群,haproxy和keepalived无需安装)

公有云要用公有云自带的负载均衡,比如阿里云的SLB,腾讯云的ELB,用来替代haproxy和keepalived,因为公有云大部分都是不支持keepalived的,另外如果用阿里云的话,kubectl控制端不能放在master节点,推荐使用腾讯云,因为阿里云的slb有回环的问题,也就是slb代理的服务器不能反向访问SLB,但是腾讯云修复了这个问题。

所有Master节点通过yum安装HAProxy和KeepAlived:

yum install keepalived haproxy -y

所有Master节点配置HAProxy(详细配置参考HAProxy文档,所有Master节点的HAProxy配置相同):

[root@k8s-master01 etc]# mkdir /etc/haproxy

[root@k8s-master01 etc]# vim /etc/haproxy/haproxy.cfg

global

maxconn 2000

ulimit-n 16384

log 127.0.0.1 local0 err

stats timeout 30s

defaults

log global

mode http

option httplog

timeout connect 5000

timeout client 50000

timeout server 50000

timeout http-request 15s

timeout http-keep-alive 15s

frontend monitor-in

bind *:33305

mode http

option httplog

monitor-uri /monitor

frontend k8s-master

bind 0.0.0.0:16443

bind 127.0.0.1:16443

mode tcp

option tcplog

tcp-request inspect-delay 5s

default_backend k8s-master

backend k8s-master

mode tcp

option tcplog

option tcp-check

balance roundrobin

default-server inter 10s downinter 5s rise 2 fall 2 slowstart 60s maxconn 250 maxqueue 256 weight 100

server k8s-master01 192.168.0.107:6443 check

server k8s-master02 192.168.0.108:6443 check

server k8s-master03 192.168.0.109:6443 check

 所有Master节点配置KeepAlived,配置不一样,注意区分 [root@k8s-master01 pki]# vim /etc/keepalived/keepalived.conf ,注意每个节点的IP和网卡(interface参数)

Master01节点的配置:

[root@k8s-master01 etc]# mkdir /etc/keepalived

[root@k8s-master01 ~]# vim /etc/keepalived/keepalived.conf

! Configuration File for keepalived

global_defs {

router_id LVS_DEVEL

script_user root

enable_script_security

}

vrrp_script chk_apiserver {

script "/etc/keepalived/check_apiserver.sh"

interval 5

weight -5

fall 2

rise 1

}

vrrp_instance VI_1 {

state MASTER

interface ens33

mcast_src_ip 192.168.0.107

virtual_router_id 51

priority 101

advert_int 2

authentication {

auth_type PASS

auth_pass K8SHA_KA_AUTH

}

virtual_ipaddress {

192.168.0.236

}

track_script {

chk_apiserver

}

}

Master02节点的配置:

! Configuration File for keepalived

global_defs {

router_id LVS_DEVEL

script_user root

enable_script_security

}

vrrp_script chk_apiserver {

script "/etc/keepalived/check_apiserver.sh"

interval 5

weight -5

fall 2

rise 1

}

vrrp_instance VI_1 {

state BACKUP

interface ens33

mcast_src_ip 192.168.0.108

virtual_router_id 51

priority 100

advert_int 2

authentication {

auth_type PASS

auth_pass K8SHA_KA_AUTH

}

virtual_ipaddress {

192.168.0.236

}

track_script {

chk_apiserver

}

}

Master03节点的配置:

! Configuration File for keepalived

global_defs {

router_id LVS_DEVEL

script_user root

enable_script_security

}

vrrp_script chk_apiserver {

script "/etc/keepalived/check_apiserver.sh"

interval 5

weight -5

fall 2

rise 1

}

vrrp_instance VI_1 {

state BACKUP

interface ens33

mcast_src_ip 192.168.0.109

virtual_router_id 51

priority 100

advert_int 2

authentication {

auth_type PASS

auth_pass K8SHA_KA_AUTH

}

virtual_ipaddress {

192.168.0.236

}

track_script {

chk_apiserver

}

}

所有master节点配置KeepAlived健康检查文件:

[root@k8s-master01 keepalived]# cat /etc/keepalived/check_apiserver.sh

#!/bin/bash

err=0

for k in $(seq 1 3)

do

check_code=$(pgrep haproxy)

if [[ $check_code == "" ]]; then

err=$(expr $err + 1)

sleep 1

continue

else

err=0

break

fi

done

if [[ $err != "0" ]]; then

echo "systemctl stop keepalived"

/usr/bin/systemctl stop keepalived

exit 1

else

exit 0

fi

chmod +x /etc/keepalived/check_apiserver.sh

启动haproxy和keepalived

[root@k8s-master01 keepalived]# systemctl daemon-reload

[root@k8s-master01 keepalived]# systemctl enable --now haproxy

[root@k8s-master01 keepalived]# systemctl enable --now keepalived

重要:如果安装了keepalived和haproxy,需要测试keepalived是否是正常的

测试VIP

[root@k8s-master01 ~]# ping 192.168.0.236 -c 4

PING 192.168.0.236 (192.168.0.236) 56(84) bytes of data.

64 bytes from 192.168.0.236: icmp_seq=1 ttl=64 time=0.464 ms

64 bytes from 192.168.0.236: icmp_seq=2 ttl=64 time=0.063 ms

64 bytes from 192.168.0.236: icmp_seq=3 ttl=64 time=0.062 ms

64 bytes from 192.168.0.236: icmp_seq=4 ttl=64 time=0.063 ms

--- 192.168.0.236 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3106ms

rtt min/avg/max/mdev = 0.062/0.163/0.464/0.173 ms

[root@k8s-master01 ~]# telnet 192.168.0.236 16443

Trying 192.168.0.236...

Connected to 192.168.0.236.

Escape character is '^]'.

Connection closed by foreign host.

如果ping不通且telnet没有出现 ] ,则认为VIP不可以,不可在继续往下执行,需要排查keepalived的问题,比如防火墙和selinux,haproxy和keepalived的状态,监听端口等

所有节点查看防火墙状态必须为disable和inactive:systemctl status firewalld

所有节点查看selinux状态,必须为disable:getenforce

master节点查看haproxy和keepalived状态:systemctl status keepalived haproxy

master节点查看监听端口:netstat -lntp

集群初始化

官方初始化文档:

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/

Master01节点创建kubeadm-config.yaml配置文件如下:

Master01:(# 注意,如果不是高可用集群,192.168.0.236:16443改为master01的地址,16443改为apiserver的端口,默认是6443,注意更改v1.18.5自己服务器kubeadm的版本:kubeadm version)

apiVersion: kubeadm.k8s.io/v1beta2

bootstrapTokens:

- groups:

- system:bootstrappers:kubeadm:default-node-token

token: 7t2weq.bjbawausm0jaxury

ttl: 24h0m0s

usages:

- signing

- authentication

kind: InitConfiguration

localAPIEndpoint:

advertiseAddress: 192.168.0.107

bindPort: 6443

nodeRegistration:

criSocket: /var/run/dockershim.sock

name: k8s-master01

taints:

- effect: NoSchedule

key: node-role.kubernetes.io/master

---

apiServer:

certSANs:

- 192.168.0.236

timeoutForControlPlane: 4m0s

apiVersion: kubeadm.k8s.io/v1beta2

certificatesDir: /etc/kubernetes/pki

clusterName: kubernetes

controlPlaneEndpoint: 192.168.0.236:16443

controllerManager: {}

dns:

type: CoreDNS

etcd:

local:

dataDir: /var/lib/etcd

imageRepository: registry.cn-hangzhou.aliyuncs.com/google_containers

kind: ClusterConfiguration

kubernetesVersion: v1.20.0

networking:

dnsDomain: cluster.local

podSubnet: 172.168.0.0/12

serviceSubnet: 10.96.0.0/12

scheduler: {}

更新kubeadm文件

kubeadm config migrate --old-config kubeadm-config.yaml --new-config new.yaml

将new.yaml文件复制到其他master节点,之后所有Master节点提前下载镜像,可以节省初始化时间:

kubeadm config images pull --config /root/new.yaml

所有节点设置开机自启动kubelet

systemctl enable --now kubelet(如果启动失败无需管理,初始化成功以后即可启动)

Master01节点初始化,初始化以后会在/etc/kubernetes目录下生成对应的证书和配置文件,之后其他Master节点加入Master01即可:

kubeadm init --config /root/new.yaml --upload-certs

如果初始化失败,重置后再次初始化,命令如下:

kubeadm reset -f ; ipvsadm --clear ; rm -rf ~/.kube

初始化成功以后,会产生Token值,用于其他节点加入时使用,因此要记录下初始化成功生成的token值(令牌值):

Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

mkdir -p $HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

sudo chown $(id -u):$(id -g) $HOME/.kube/config

Alternatively, if you are the root user, you can run:

export KUBECONFIG=/etc/kubernetes/admin.conf

You should now deploy a pod network to the cluster.

Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:

https://kubernetes.io/docs/concepts/cluster-administration/addons/

You can now join any number of the control-plane node running the following command on each as root:

kubeadm join 192.168.0.236:16443 --token 7t2weq.bjbawausm0jaxury \

--discovery-token-ca-cert-hash sha256:8c92ecb336be2b9372851a9af2c7ca1f7f60c12c68f6ffe1eb513791a1b8a908 \

--control-plane --certificate-key ac2854de93aaabdf6dc440322d4846fc230b290c818c32d6ea2e500fc930b0aa

Please note that the certificate-key gives access to cluster sensitive data, keep it secret!

As a safeguard, uploaded-certs will be deleted in two hours; If necessary, you can use

"kubeadm init phase upload-certs --upload-certs" to reload certs afterward.

Then you can join any number of worker nodes by running the following on each as root:

kubeadm join 192.168.0.236:16443 --token 7t2weq.bjbawausm0jaxury \

--discovery-token-ca-cert-hash sha256:8c92ecb336be2b9372851a9af2c7ca1f7f60c12c68f6ffe1eb513791a1b8a908

Master01节点配置环境变量,用于访问Kubernetes集群:

cat <<EOF >> /root/.bashrc

export KUBECONFIG=/etc/kubernetes/admin.conf

EOF

source /root/.bashrc

查看节点状态:

[root@k8s-master01 ~]# kubectl get nodes

NAME STATUS ROLES AGE VERSION

k8s-master01 NotReady control-plane,master 74s v1.20.0

采用初始化安装方式,所有的系统组件均以容器的方式运行并且在kube-system命名空间内,此时可以查看Pod状态:

[root@k8s-master01 ~]# kubectl get pods -n kube-system -o wide

NAME READY STATUS RESTARTS AGE IP NODE

coredns-777d78ff6f-kstsz 0/1 Pending 0 14m <none> <none>

coredns-777d78ff6f-rlfr5 0/1 Pending 0 14m <none> <none>

etcd-k8s-master01 1/1 Running 0 14m 192.168.0.107 k8s-master01

kube-apiserver-k8s-master01 1/1 Running 0 13m 192.168.0.107 k8s-master01

kube-controller-manager-k8s-master01 1/1 Running 0 13m 192.168.0.107 k8s-master01

kube-proxy-8d4qc 1/1 Running 0 14m 192.168.0.107 k8s-master01

kube-scheduler-k8s-master01 1/1 Running 0 13m 192.168.0.107 k8s-master01

高可用Master

Token过期后生成新的token:

kubeadm token create --print-join-command

Master需要生成--certificate-key

kubeadm init phase upload-certs --upload-certs

初始化其他master加入集群

kubeadm join 192.168.0.236:16443 --token fgtxr1.bz6dw1tci1kbj977 --discovery-token-ca-cert-hash sha256:06ebf46458a41922ff1f5b3bc49365cf3dd938f1a7e3e4a8c8049b5ec5a3aaa5 \

--control-plane --certificate-key 03f99fb57e8d5906e4b18ce4b737ce1a055de1d144ab94d3cdcf351dfcd72a8b

Node节点的配置

Node节点上主要部署公司的一些业务应用,生产环境中不建议Master节点部署系统组件之外的其他Pod,测试环境可以允许Master节点部署Pod以节省系统资源。

kubeadm join 192.168.0.236:16443 --token 7t2weq.bjbawausm0jaxury \

--discovery-token-ca-cert-hash sha256:8c92ecb336be2b9372851a9af2c7ca1f7f60c12c68f6ffe1eb513791a1b8a908

所有节点初始化完成后,查看集群状态

[root@k8s-master01]# kubectl get node

NAME STATUS ROLES AGE VERSION

k8s-master01 NotReady control-plane,master 8m53s v1.20.0

k8s-master02 NotReady control-plane,master 2m25s v1.20.0

k8s-master03 NotReady control-plane,master 31s v1.20.0

k8s-node01 NotReady <none> 32s v1.20.0

k8s-node02 NotReady <none> 88s v1.20.0

Calico组件的安装

以下步骤只在master01执行

cd /root/k8s-ha-install && git checkout manual-installation-v1.20.x && cd calico/

修改calico-etcd.yaml的以下位置

sed -i 's#etcd_endpoints: "http://<ETCD_IP>:<ETCD_PORT>"#etcd_endpoints: "https://192.168.0.107:2379,https://192.168.0.108:2379,https://192.168.0.109:2379"#g' calico-etcd.yaml

ETCD_CA=`cat /etc/kubernetes/pki/etcd/ca.crt | base64 | tr -d '\n'`

ETCD_CERT=`cat /etc/kubernetes/pki/etcd/server.crt | base64 | tr -d '\n'`

ETCD_KEY=`cat /etc/kubernetes/pki/etcd/server.key | base64 | tr -d '\n'`

sed -i "s@# etcd-key: null@etcd-key: ${ETCD_KEY}@g; s@# etcd-cert: null@etcd-cert: ${ETCD_CERT}@g; s@# etcd-ca: null@etcd-ca: ${ETCD_CA}@g" calico-etcd.yaml

sed -i 's#etcd_ca: ""#etcd_ca: "/calico-secrets/etcd-ca"#g; s#etcd_cert: ""#etcd_cert: "/calico-secrets/etcd-cert"#g; s#etcd_key: "" #etcd_key: "/calico-secrets/etcd-key" #g' calico-etcd.yaml

POD_SUBNET=`cat /etc/kubernetes/manifests/kube-controller-manager.yaml | grep cluster-cidr= | awk -F= '{print $NF}'`

# 注意下面的这个步骤是把calico-etcd.yaml文件里面的CALICO_IPV4POOL_CIDR下的网段改成自己的Pod网段,也就是把192.168.x.x/16改成自己的集群网段,并打开注释:

Kubernetes三主两从集群搭建_k8s

所以更改的时候请确保这个步骤的这个网段没有被统一替换掉,如果被替换掉了,还请改回来:

Kubernetes三主两从集群搭建_docker_02

sed -i 's@# - name: CALICO_IPV4POOL_CIDR@- name: CALICO_IPV4POOL_CIDR@g; s@# value: "192.168.0.0/16"@ value: '"${POD_SUBNET}"'@g' calico-etcd.yaml

kubectl apply -f calico-etcd.yaml

查看容器状态

[root@k8s-master01 calico]# kubectl get po -n kube-system

NAME READY STATUS RESTARTS AGE

calico-kube-controllers-5f6d4b864b-pwvnb 1/1 Running 0 3m29s

calico-node-5lz9m 1/1 Running 0 3m29s

calico-node-8z4bg 1/1 Running 0 3m29s

calico-node-lmzvf 1/1 Running 0 3m29s

calico-node-mpngv 1/1 Running 0 3m29s

calico-node-vmqsl 1/1 Running 0 3m29s

coredns-54d67798b7-8525g 1/1 Running 0 39m

coredns-54d67798b7-fxs72 1/1 Running 0 39m

etcd-k8s-master01 1/1 Running 0 39m

etcd-k8s-master02 1/1 Running 0 33m

etcd-k8s-master03 1/1 Running 0 31m

kube-apiserver-k8s-master01 1/1 Running 0 39m

kube-apiserver-k8s-master02 1/1 Running 0 33m

kube-apiserver-k8s-master03 1/1 Running 0 30m

kube-controller-manager-k8s-master01 1/1 Running 1 39m

kube-controller-manager-k8s-master02 1/1 Running 0 33m

kube-controller-manager-k8s-master03 1/1 Running 0 31m

kube-proxy-hnkmj 1/1 Running 0 39m

kube-proxy-jk4dm 1/1 Running 0 32m

kube-proxy-nbcg2 1/1 Running 0 32m

kube-proxy-qv9k7 1/1 Running 0 32m

kube-proxy-x6xdc 1/1 Running 0 33m

kube-scheduler-k8s-master01 1/1 Running 1 39m

kube-scheduler-k8s-master02 1/1 Running 0 33m

kube-scheduler-k8s-master03 1/1 Running 0 30m

Metrics部署

在新版的Kubernetes中系统资源的采集均使用Metrics-server,可以通过Metrics采集节点和Pod的内存、磁盘、CPU和网络的使用率。

将Master01节点的front-proxy-ca.crt复制到所有Node节点

scp /etc/kubernetes/pki/front-proxy-ca.crt k8s-node01:/etc/kubernetes/pki/front-proxy-ca.crt

scp /etc/kubernetes/pki/front-proxy-ca.crt k8s-node(其他节点自行拷贝):/etc/kubernetes/pki/front-proxy-ca.crt

安装metrics server

cd /root/k8s-ha-install/metrics-server-0.4.x-kubeadm/

[root@k8s-master01 metrics-server-0.4.x-kubeadm]# kubectl create -f comp.yaml

serviceaccount/metrics-server created

clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader created

clusterrole.rbac.authorization.k8s.io/system:metrics-server created

rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created

clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator created

clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server created

service/metrics-server created

deployment.apps/metrics-server created

apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created

查看状态

[root@k8s-master01 metrics-server-0.4.x-kubeadm]# kubectl top node

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%

k8s-master01 109m 2% 1296Mi 33%

k8s-master02 99m 2% 1124Mi 29%

k8s-master03 104m 2% 1082Mi 28%

k8s-node01 55m 1% 761Mi 19%

k8s-node02 53m 1% 663Mi 17%

Dashboard部署

Dashboard用于展示集群中的各类资源,同时也可以通过Dashboard实时查看Pod的日志和在容器中执行一些命令等。

安装指定版本dashboard

cd /root/k8s-ha-install/dashboard/

[root@k8s-master01 dashboard]# kubectl create -f .

serviceaccount/admin-user created

clusterrolebinding.rbac.authorization.k8s.io/admin-user created

namespace/kubernetes-dashboard created

serviceaccount/kubernetes-dashboard created

service/kubernetes-dashboard created

secret/kubernetes-dashboard-certs created

secret/kubernetes-dashboard-csrf created

secret/kubernetes-dashboard-key-holder created

configmap/kubernetes-dashboard-settings created

role.rbac.authorization.k8s.io/kubernetes-dashboard created

clusterrole.rbac.authorization.k8s.io/kubernetes-dashboard created

rolebinding.rbac.authorization.k8s.io/kubernetes-dashboard created

clusterrolebinding.rbac.authorization.k8s.io/kubernetes-dashboard created

deployment.apps/kubernetes-dashboard created

service/dashboard-metrics-scraper created

deployment.apps/dashboard-metrics-scraper created

安装最新版

官方GitHub地址:https://github.com/kubernetes/dashboard

可以在官方dashboard查看到最新版dashboard

Kubernetes三主两从集群搭建_docker_03

kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.3/aio/deploy/recommended.yaml

创建管理员用户vim admin.yaml

apiVersion: v1

kind: ServiceAccount

metadata:

name: admin-user

namespace: kube-system

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

name: admin-user

annotations:

rbac.authorization.kubernetes.io/autoupdate: "true"

roleRef:

apiGroup: rbac.authorization.k8s.io

kind: ClusterRole

name: cluster-admin

subjects:

- kind: ServiceAccount

name: admin-user

namespace: kube-system

kubectl apply -f admin.yaml -n kube-system

登录dashboard

在谷歌浏览器(Chrome)启动文件中加入启动参数,用于解决无法访问Dashboard的问题,参考图1-1:

--test-type --ignore-certificate-errors

Kubernetes三主两从集群搭建_k8s_04

图1-1 谷歌浏览器 Chrome的配置

更改dashboard的svc为NodePort:

kubectl edit svc kubernetes-dashboard -n kubernetes-dashboard

Kubernetes三主两从集群搭建_docker_05

将ClusterIP更改为NodePort(如果已经为NodePort忽略此步骤):

查看端口号:

kubectl get svc kubernetes-dashboard -n kubernetes-dashboard

Kubernetes三主两从集群搭建_kubernetes_06

根据自己的实例端口号,通过任意安装了kube-proxy的宿主机或者VIP的IP+端口即可访问到dashboard:

访问Dashboard:https://192.168.0.236:18282(请更改18282为自己的端口),选择登录方式为令牌(即token方式),参考图1-2

Kubernetes三主两从集群搭建_k8s_07

图1-2 Dashboard登录方式

查看token值:

[root@k8s-master01 1.1.1]# kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep admin-user | awk '{print $1}')

Name: admin-user-token-r4vcp

Namespace: kube-system

Labels: <none>

Annotations: kubernetes.io/service-account.name: admin-user

kubernetes.io/service-account.uid: 2112796c-1c9e-11e9-91ab-000c298bf023

Type: kubernetes.io/service-account-token

Data

====

ca.crt: 1025 bytes

namespace: 11 bytes

token: eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJhZG1pbi11c2VyLXRva2VuLXI0dmNwIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQubmFtZSI6ImFkbWluLXVzZXIiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC51aWQiOiIyMTEyNzk2Yy0xYzllLTExZTktOTFhYi0wMDBjMjk4YmYwMjMiLCJzdWIiOiJzeXN0ZW06c2VydmljZWFjY291bnQ6a3ViZS1zeXN0ZW06YWRtaW4tdXNlciJ9.bWYmwgRb-90ydQmyjkbjJjFt8CdO8u6zxVZh-19rdlL_T-n35nKyQIN7hCtNAt46u6gfJ5XXefC9HsGNBHtvo_Ve6oF7EXhU772aLAbXWkU1xOwQTQynixaypbRIas_kiO2MHHxXfeeL_yYZRrgtatsDBxcBRg-nUQv4TahzaGSyK42E_4YGpLa3X3Jc4t1z0SQXge7lrwlj8ysmqgO4ndlFjwPfvg0eoYqu9Qsc5Q7tazzFf9mVKMmcS1ppPutdyqNYWL62P1prw_wclP0TezW1CsypjWSVT4AuJU8YmH8nTNR1EXn8mJURLSjINv6YbZpnhBIPgUGk1JYVLcn47w

将token值输入到令牌后,单击登录即可访问Dashboard,参考图1-3:

Kubernetes三主两从集群搭建_docker_08

图1-3 Dashboard页面

一些必须的配置更改

将Kube-proxy改为ipvs模式,因为在初始化集群的时候注释了ipvs配置,所以需要自行修改一下:

在master01节点执行

kubectl edit cm kube-proxy -n kube-system

mode: “ipvs”

更新Kube-Proxy的Pod:

kubectl patch daemonset kube-proxy -p "{\"spec\":{\"template\":{\"metadata\":{\"annotations\":{\"date\":\"`date +'%s'`\"}}}}}" -n kube-system

验证Kube-Proxy模式

[root@k8s-master01 1.1.1]# curl 127.0.0.1:10249/proxyMode

ipvs

注意事项

注意:kubeadm安装的集群,证书有效期默认是一年。master节点的kube-apiserver、kube-scheduler、kube-controller-manager、etcd都是以容器运行的。可以通过kubectl get po -n kube-system查看。

启动和二进制不同的是,

kubelet的配置文件在/etc/sysconfig/kubelet和/var/lib/kubelet/config.yaml

其他组件的配置文件在/etc/Kubernetes/manifests目录下,比如kube-apiserver.yaml,该yaml文件更改后,kubelet会自动刷新配置,也就是会重启pod。不能再次创建该文件

Kubeadm安装后,master节点默认不允许部署pod,可以通过以下方式打开:

查看Taints:

[root@k8s-master01 ~]# kubectl describe node -l node-role.kubernetes.io/master= | grep Taints

Taints: node-role.kubernetes.io/master:NoSchedule

Taints: node-role.kubernetes.io/master:NoSchedule

Taints: node-role.kubernetes.io/master:NoSchedule

删除Taint:

[root@k8s-master01 ~]# kubectl taint node -l node-role.kubernetes.io/master node-role.kubernetes.io/master:NoSchedule-

node/k8s-master01 untainted

node/k8s-master02 untainted

node/k8s-master03 untainted

[root@k8s-master01 ~]# kubectl describe node -l node-role.kubernetes.io/master= | grep Taints

Taints: <none>

Taints: <none>

Taints: <none>

标签:三主,Kubernetes,kubernetes,--,master01,192.168,etc,集群,k8s
From: https://blog.51cto.com/u_13482808/7267312

相关文章

  • Kubernetes编程—— 如何操作自定义资源
    如何操作自定义资源client-go为每种kubernetes内置资源提供对应的clientset和informer。那如果我们要监听和操作自定义资源对象,应该如何做呢?这里我们有两种方式:我理解意思是说:1、使用client-go提供的dynamicClient来操作自定义操作资源对象,当......
  • Redis缓存高可用集群(3.1)
    1、Redis集群方案比较哨兵模式在redis3.0以前的版本要实现集群一般是借助哨兵sentinel工具来监控master节点的状态,如果master节点异常,则会做主从切换,将某一台slave作为master,哨兵的配置略微复杂,并且性能和高可用性等各方面表现一般,特别是在主从切换的瞬间存在访问瞬断的情况......
  • Kubernetes 对接 GlusterFS 磁盘扩容实战
    前言知识点定级:入门级使用HeketiTopology扩容磁盘使用HeketiCLI扩容磁盘实战服务器配置(架构1:1复刻小规模生产环境,配置略有不同)主机名IPCPU内存系统盘数据盘用途ks-master-0192.168.9.912450100KubeSphere/k8s-masterks-master-1192.1......
  • Redis集群
     Redis集群一、Redis集群Redis集群是一种使用分布式技术将数据分散存储在多个节点上的解决方案。它可以提供高可用性、扩展性和性能的优势。Redis集群通过分片(Sharding)来存储数据。数据被平均分配到多个节点上,每个节点负责存储一部分数据。这样可以将负载分散到多个节点上,......
  • 20.集群因子(Clustering Factor)
    集群因子用于判断索引回表需要消耗的物理I/O次数。这里在测试表test上创建一个索引:createindexidx_idontest(object_id);selectowner,index_name,clustering_factorfromdba_indexeswhereowner='TEST'andindex_name='IDX_ID';结果展示:OWNER......
  • Redis集群
    Redis主从集群主从复制模式就是,部署多台redis节点,其中只有一台节点是主节点(master),其他的节点都是从节点(slave),也叫备份节点(replica)。只有master节点提供数据的事务性操作(增删改),slave节点只提供读操作。所有slave节点的数据都是从master节点同步过来的。该模式的架构图如下:共包含......
  • kubernetes 指标监控 metrics-server 的配置
    kubernetes指标监控metrics-server的配置 apiVersion:v1kind:ServiceAccountmetadata:labels:k8s-app:metrics-servername:metrics-servernamespace:kube-system---apiVersion:rbac.authorization.k8s.io/v1kind:ClusterRolemetadata:labels......
  • kubernetes client-go快速入门及源码阅读
    client-go是kubernetes官方维护的一个go语言客户端,用于与k8s集群交互,使用client-go可以很方便的完成k8s的二次开发(似乎也必不可少),无论是稳定性还是健壮性都有充分的保障。client-go代码版本:v0.20.2个人水平有些,一定会出现不严谨或者错误的地方,如有错误麻烦评论指正,谢谢版......
  • 关于Kubernetes-v1.23.6-集群测试-创建一个nginx的deployment进行验证
    关于k8s集群环境搭建完成后,我们可以通过创建一个deployment进行效果的测试这里以nginx为例,还是在k8s-master上进行创建kubectlcreatedeploymentnginx--image=nginxkubectlexposedeploymentnginx--port=80--type=NodePort这里--port只是指定了容器(container )暴......
  • nacos集群搭建
                                    ......