首页 > 其他分享 >深度和广度优先搜索:如何找出社交网络中的三度好友关系?

深度和广度优先搜索:如何找出社交网络中的三度好友关系?

时间:2022-10-02 16:35:03浏览次数:80  
标签:优先 int visited 搜索 顶点 广度 prev 社交 三度

地址:https://time.geekbang.org/column/article/70891

目录

什么是“搜索”算法?

算法是作用于具体数据结构之上的,深度优先搜索算法和广度优先搜索算法都是基于“图”这种数据结构的,

深度优先搜索(DFS)

深度优先搜索(Depth-First-Search),简称 DFS

image


boolean found = false; // 全局变量或者类成员变量

public void dfs(int s, int t) {
  found = false;
  boolean[] visited = new boolean[v];
  int[] prev = new int[v];
  for (int i = 0; i < v; ++i) {
    prev[i] = -1;
  }
  recurDfs(s, t, visited, prev);
  print(prev, s, t);
}

private void recurDfs(int w, int t, boolean[] visited, int[] prev) {
  if (found == true) return;
  visited[w] = true;
  if (w == t) {
    found = true;
    return;
  }
  for (int i = 0; i < adj[w].size(); ++i) {
    int q = adj[w].get(i);
    if (!visited[q]) {
      prev[q] = w;
      recurDfs(q, t, visited, prev);
    }
  }
}

定义是从顶点v出发,访问v的所有未被访问的邻接顶点,再对该顶点进行深度优先遍历,直至v的所有邻接顶点被访问。如果这个邻接顶点被访问过或者无邻接顶点,则回溯。若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止

从我前面画的图可以看出,每条边最多会被访问两次,一次是遍历,一次是回退。所以,图上的深度优先搜索算法的时间复杂度是 O(E),E 表示边的个数。

深度优先搜索算法的消耗内存主要是 visited、prev 数组和递归调用栈。visited、prev 数组的大小跟顶点的个数 V 成正比,递归调用栈的最大深度不会超过顶点的个数,所以总的空间复杂度就是 O(V)。

广度优先搜索(BFS)

直观地讲,它其实就是一种“地毯式”层层推进的搜索策略,即先查找离起始顶点最近的,然后是次近的,依次往外搜索
image

这里面,bfs() 函数就是基于之前定义的,图的广度优先搜索的代码实现。其中 s 表示起始顶点,t 表示终止顶点。我们搜索一条从 s 到 t 的路径。实际上,这样求得的路径就是从 s 到 t 的最短路径。


public void bfs(int s, int t) {
  if (s == t) return;
  boolean[] visited = new boolean[v];
  visited[s]=true;
  Queue<Integer> queue = new LinkedList<>();
  queue.add(s);
  int[] prev = new int[v];
  for (int i = 0; i < v; ++i) {
    prev[i] = -1;
  }
  while (queue.size() != 0) {
    int w = queue.poll();
   for (int i = 0; i < adj[w].size(); ++i) {
      int q = adj[w].get(i);
      if (!visited[q]) {
        prev[q] = w;
        if (q == t) {
          print(prev, s, t);
          return;
        }
        visited[q] = true;
        queue.add(q);
      }
    }
  }
}

private void print(int[] prev, int s, int t) { // 递归打印s->t的路径
  if (prev[t] != -1 && t != s) {
    print(prev, s, prev[t]);
  }
  System.out.print(t + " ");
}


image

visited 是用来记录已经被访问的顶点,用来避免顶点被重复访问。如果顶点 q 被访问,那相应的 visited[q]会被设置为 true。

queue 是一个队列,用来存储已经被访问、但相连的顶点还没有被访问的顶点。因为广度优先搜索是逐层访问的,也就是说,我们只有把第 k 层的顶点都访问完成之后,才能访问第 k+1 层的顶点。当我们访问到第 k 层的顶点的时候,我们需要把第 k 层的顶点记录下来,稍后才能通过第 k 层的顶点来找第 k+1 层的顶点。所以,我们用这个队列来实现记录的功能。

内容小结

  • 广度优先搜索: 地毯式层层推进,从起始顶点开始,依次往外遍历。需要借助队列来实现,遍历得到的路径就是起始顶点到终止顶点的最短路径

  • 深度优先搜索用的是回溯思想,非常适合用递归实现。换种说法,深度优先搜索是借助栈来实现的。在执行效率方面,深度优先和广度优先搜索的时间复杂度都是 O(E),空间复杂度是 O(V)。

标签:优先,int,visited,搜索,顶点,广度,prev,社交,三度
From: https://www.cnblogs.com/xiayuxue/p/16736788.html

相关文章