首页 > 其他分享 >TCP —— 连接建立与关闭

TCP —— 连接建立与关闭

时间:2023-08-21 16:24:56浏览次数:43  
标签:重传 报文 TCP 关闭 连接 服务端 客户端

参考:

小林coding: https://xiaolincoding.com/network/3_tcp/tcp_interview.html

 

TCP 头部

序列号:在建立连接时由计算机生成的随机数作为其初始值,通过 SYN 包传给接收端主机,每发送一次数据,就「累加」一次该「数据字节数」的大小。用来解决网络包乱序问题。

确认应答号:指下一次「期望」收到的数据的序列号,发送端收到这个确认应答以后可以认为在这个序号以前的数据都已经被正常接收。用来解决丢包的问题。

控制位:

  • ACK:该位为 1 时,「确认应答」的字段变为有效,TCP 规定除了最初建立连接时的 SYN 包之外该位必须设置为 1 。
  • RST该位为 1 时,表示 TCP 连接中出现异常必须强制断开连接。
  • SYN该位为 1 时,表示希望建立连接,并在其「序列号」的字段进行序列号初始值的设定。
  • FIN:该位为 1 时,表示今后不会再有数据发送,希望断开连接。当通信结束希望断开连接时,通信双方的主机之间就可以相互交换 FIN 位为 1 的 TCP 段。

TCP 四元组可以唯一的确定一个连接,四元组包括如下:

  • 源地址
  • 源端口
  • 目的地址
  • 目的端口

服务端通常固定在某个本地端口上监听,等待客户端的连接请求。

因此,客户端 IP 和端口是可变的,其理论值计算公式如下:

当然,服务端最大并发 TCP 连接数远不能达到理论上限,会受以下因素影响:

  • 文件描述符限制,每个 TCP 连接都是一个文件,如果文件描述符被占满了,会发生 Too many open files。Linux 对可打开的文件描述符的数量分别作了三个方面的限制:
    • 系统级:当前系统可打开的最大数量,通过 cat /proc/sys/fs/file-max 查看;
    • 用户级:指定用户可打开的最大数量,通过 cat /etc/security/limits.conf 查看;
    • 进程级:单个进程可打开的最大数量,通过 cat /proc/sys/fs/nr_open 查看;
  • 内存限制,每个 TCP 连接都要占用一定内存,操作系统的内存是有限的,如果内存资源被占满后,会发生 OOM。

UDP 头部

  • 目标和源端口:主要是告诉 UDP 协议应该把报文发给哪个进程。
  • 包长度:该字段保存了 UDP 首部的长度跟数据的长度之和。
  • 校验和:校验和是为了提供可靠的 UDP 首部和数据而设计,防止收到在网络传输中受损的 UDP 包。

为什么 UDP 头部没有「首部长度」字段,而 TCP 头部有「首部长度」字段呢?

  • 原因是 TCP 有可变长的「选项」字段,而 UDP 头部长度则是不会变化的,无需多一个字段去记录 UDP 的首部长度。

TCP 和 UDP 可以使用同一个端口吗?

  • 传输层有两个传输协议分别是 TCP 和 UDP,在内核中是两个完全独立的软件模块。TCP/UDP 各自的端口号也相互独立,如 TCP 有一个 80 号端口,UDP 也可以有一个 80 号端口,二者并不冲突。

TCP UDP 区别

1. 连接

  • TCP 是面向连接的传输层协议,传输数据前先要建立连接。
  • UDP 是不需要连接,即刻传输数据。

2. 服务对象

  • TCP 是一对一的两点服务,即一条连接只有两个端点。
  • UDP 支持一对一、一对多、多对多的交互通信

3. 可靠性

  • TCP 是可靠交付数据的,数据可以无差错、不丢失、不重复、按序到达(超时重传)。
  • UDP 是尽最大努力交付,不保证可靠交付数据。但是我们可以基于 UDP 传输协议实现一个可靠的传输协议,比如 QUIC 协议,具体可以参见这篇文章:如何基于 UDP 协议实现可靠传输?(opens new window)

4. 拥塞控制、流量控制

  • TCP 有拥塞控制和流量控制机制,保证数据传输的安全性。
  • UDP 则没有,即使网络非常拥堵了,也不会影响 UDP 的发送速率。

5. 首部开销

  • TCP 首部长度较长,会有一定的开销,首部在没有使用「选项」字段时是 20 个字节,如果使用了「选项」字段则会变长的。
  • UDP 首部只有 8 个字节,并且是固定不变的,开销较小。

6. 传输方式

  • TCP 是流式传输,面向字节流,没有边界,但保证顺序和可靠。
  • UDP 是一个包一个包的发送,是有边界的,但可能会丢包和乱序。

7. 分片不同

  • TCP 的数据大小如果大于 MSS 大小,则会在传输层进行分片,目标主机收到后,也同样在传输层组装 TCP 数据包,如果中途丢失了一个分片,只需要传输丢失的这个分片。
  • UDP 的数据大小如果大于 MTU 大小,则会在 IP 层进行分片,目标主机收到后,在 IP 层组装完数据,接着再传给传输层。

 

TCP建立连接——三次握手

  • 一开始,客户端和服务端都处于 CLOSE 状态。先是服务端主动监听某个端口,处于 LISTEN 状态
  • 客户端会随机初始化序号(client_isn),将此序号置于 TCP 首部的「序号」字段中,同时把 SYN 标志位置为 1,表示 SYN 报文。接着把第一个 SYN 报文发送给服务端,表示向服务端发起连接,该报文不包含应用层数据,之后客户端处于 SYN-SENT 状态。
  • 服务端收到客户端的 SYN 报文后,首先服务端也随机初始化自己的序号(server_isn),将此序号填入 TCP 首部的「序号」字段中,其次把 TCP 首部的「确认应答号」字段填入 client_isn + 1, 接着把 SYN 和 ACK 标志位置为 1。最后把该报文发给客户端,该报文也不包含应用层数据,之后服务端处于 SYN-RCVD 状态。
  • 客户端收到服务端报文后,还要向服务端回应最后一个应答报文,首先该应答报文 TCP 首部 ACK 标志位置为 1 ,其次「确认应答号」字段填入 server_isn + 1 ,最后把报文发送给服务端,这次报文可以携带客户到服务端的数据,之后客户端处于 ESTABLISHED 状态。
  • 服务端收到客户端的应答报文后,也进入 ESTABLISHED 状态。

第三次握手是可以携带数据的,前两次握手是不可以携带数据的,这也是面试常问的题。

为什么是三次握手?

RFC 793 指出的 TCP 连接使用三次握手的首要原因:

The principle reason for the three-way handshake is to prevent old duplicate connection initiations from causing confusion.

「旧 SYN 报文」称为历史连接,TCP 使用三次握手建立连接的最主要原因就是防止「历史连接」初始化了连接。

 

此外,还能帮助双方同步初始化序列号。序列号能够保证数据包不重复、不丢弃按序传输

 

不使用「两次握手」和「四次握手」的原因:

 

  • 「两次握手」:无法防止历史连接的建立,也无法可靠的同步双方序列号;
  • 「四次握手」:三次握手就已经理论上最少可靠连接建立,所以不需要使用更多的通信次数。

 

 

为什么每次建立 TCP 连接时,初始化的序列号都要求不一样呢?

可以看到,如果每次建立连接,客户端和服务端的初始化序列号都是一样的话,很容易出现历史报文被下一个相同四元组的连接接收的问题。

 

既然 IP 层会分片,为什么 TCP 层还需要 MSS 呢?

 IP 层本身没有超时重传机制,它由传输层的 TCP 来负责超时和重传。

经过 TCP 层分片后,如果一个 TCP 分片丢失后,进行重发时也是以 MSS 为单位,而不用重传整个 IP 报文的所有的分片,大大增加了重传的效率。

 

第一次握手丢失了,会发生什么?

当客户端在 1 秒后没收到服务端的 SYN-ACK 报文后,客户端就会重发 SYN 报文,那到底重发几次呢?

在 Linux 里,客户端的 SYN 报文最大重传次数由 tcp_syn_retries内核参数控制,这个参数是可以自定义的,默认值一般是 5。

每次超时的时间是上一次的 2 倍。总耗时是 1+2+4+8+16+32=63 秒,大约 1 分钟左右。

当第五次超时重传后,会继续等待 32 秒,如果服务端仍然没有回应 ACK,客户端就不再发送 SYN 包,然后断开 TCP 连接。

第二次握手丢失了,会发生什么?

当第二次握手丢失了,客户端和服务端都会重传:

  • 如果第二次握手丢失了,客户端就收不到第二次握手。客户端会重传 SYN 报文,也就是第一次握手,最大重传次数由 tcp_syn_retries内核参数决定;如果还是没能收到服务端的第二次握手(SYN-ACK 报文),那么客户端就会断开连接。
  • 如果第二次握手丢失了,服务端就收不到第三次握手。服务端会重传 SYN-ACK 报文,也就是第二次握手,最大重传次数由 tcp_synack_retries 内核参数决定。默认值是 5。如果还是没能收到客户端的第三次握手(ACK 报文),那么服务端就会断开连接。

第三次握手丢失了,会发生什么?

ack 报文是不会重传的

  • 第三次握手的 ACK 是对第二次握手的 SYN 的确认报文,所以当第三次握手丢失了,如果服务端那一方迟迟收不到这个确认报文,就会触发超时重传机制,重传 SYN-ACK 报文,直到收到第三次握手,或者达到最大重传次数。如果还是没能收到客户端的第三次握手(ACK 报文),那么服务端就会断开连接。

什么是 SYN 攻击?如何避免 SYN 攻击?

我们都知道 TCP 连接建立是需要三次握手,假设攻击者短时间伪造不同 IP 地址的 SYN 报文,服务端每接收到一个 SYN 报文,就进入SYN_RCVD 状态,但服务端发送出去的 ACK + SYN 报文,无法得到未知 IP 主机的 ACK 应答,久而久之就会占满服务端的半连接队列,使得服务端不能为正常用户服务。

当 TCP 半连接队列满了,后续再在收到 SYN 报文就会丢弃,导致客户端无法和服务端建立连接。

避免 SYN 攻击方式,可以有以下四种方法:

  • 调大 netdev_max_backlog;
  • 增大 TCP 半连接队列;
  • 开启 tcp_syncookies;
  • 减少 SYN+ACK 重传次数

方式一:调大 netdev_max_backlog

当网卡接收数据包的速度大于内核处理的速度时,会有一个队列保存这些数据包。控制该队列的最大值如下参数,默认值是 1000,我们要适当调大该参数的值,比如设置为 10000.

方式二:增大 TCP 半连接队列

增大 TCP 半连接队列,要同时增大下面这三个参数:

  • 增大 net.ipv4.tcp_max_syn_backlog
  • 增大 listen() 函数中的 backlog
  • 增大 net.core.somaxconn

方式三:开启 net.ipv4.tcp_syncookies

开启 syncookies 功能就可以在不使用 SYN 半连接队列的情况下成功建立连接,相当于绕过了 SYN 半连接来建立连接。

 

具体过程:

 

  • 当 「 SYN 队列」满之后,后续服务端收到 SYN 包,不会丢弃,而是根据算法,计算出一个 cookie 值;
  • 将 cookie 值放到第二次握手报文的「序列号」里,然后服务端回第二次握手给客户端;
  • 服务端接收到客户端的应答报文时,服务端会检查这个 ACK 包的合法性。如果合法,将该连接对象放入到「 Accept 队列」。
  • 最后应用程序通过调用 accpet() 接口,从「 Accept 队列」取出的连接。

方式四:减少 SYN+ACK 重传次数

当服务端受到 SYN 攻击时,就会有大量处于 SYN_REVC 状态的 TCP 连接,处于这个状态的 TCP 收不到第三次握手,会重传 SYN+ACK ,当重传超过次数达到上限后,就会断开连接。

 

TCP断开连接 —— 四次挥手

这里一点需要注意是:主动关闭连接的,才有 TIME_WAIT 状态。

为什么挥手需要四次?

  • 关闭连接时,客户端向服务端发送 FIN 时,仅仅表示客户端不再发送数据了但是还能接收数据。
  • 服务端收到客户端的 FIN 报文时,先回一个 ACK 应答报文,而服务端可能还有数据需要处理和发送,等服务端不再发送数据时,才发送 FIN 报文给客户端来表示同意现在关闭连接。

从上面过程可知,服务端通常需要等待完成数据的发送和处理,所以服务端的 ACK 和 FIN 一般都会分开发送,因此是需要四次挥手。

第一次挥手丢失了,会发生什么?

如果第一次挥手丢失了,那么客户端迟迟收不到被动方的 ACK 的话,也就会触发超时重传机制,重传 FIN 报文,重发次数由 tcp_orphan_retries 参数控制。当客户端重传 FIN 报文的次数超过 tcp_orphan_retries 后,就不再发送 FIN 报文,则会在等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到第二次挥手,那么直接进入到 close 状态。

第二次挥手丢失了,会发生什么?

  • ACK 报文是不会重传的,所以如果服务端的第二次挥手丢失了,客户端就会触发超时重传机制,重传 FIN 报文,直到收到服务端的第二次挥手,或者达到最大的重传次数。
  • 对于 close 函数关闭的连接,由于无法再发送和接收数据,所以FIN_WAIT2 状态不可以持续太久,而 tcp_fin_timeout 控制了这个状态下连接的持续时长,默认值是 60 秒。这意味着对于调用 close 关闭的连接,如果在 60 秒后还没有收到 FIN 报文,客户端(主动关闭方)的连接就会直接关闭。

第三次挥手丢失了,会发生什么?

  • 如果迟迟收不到这个 ACK,服务端就会重发 FIN 报文,重发次数仍然由 tcp_orphan_retries 参数控制,这与客户端重发 FIN 报文的重传次数控制方式是一样的。
  • 客户端因为是通过 close 函数关闭连接的,处于 FIN_WAIT_2 状态是有时长限制的,如果 tcp_fin_timeout 时间内还是没能收到服务端的第三次挥手(FIN 报文),那么客户端就会断开连接。

第四次挥手丢失了,会发生什么?

  • 当服务端重传第三次挥手报文达到 2 时,由于 tcp_orphan_retries 为 2, 达到了最大重传次数,于是再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到客户端的第四次挥手(ACK 报文),那么服务端就会断开连接。
  • 客户端在收到第三次挥手后,就会进入 TIME_WAIT 状态,开启时长为 2MSL 的定时器,如果途中再次收到第三次挥手(FIN 报文)后,就会重置定时器,当等待 2MSL 时长后,客户端就会断开连接。

为什么 TIME_WAIT 等待的时间是 2MSL?

  • MSL 是 Maximum Segment Lifetime,报文最大生存时间
  •  IP 头中有一个 TTL 字段,是 IP 数据报可以经过的最大路由数,每经过一个处理他的路由器此值就减 1

TTL 的值一般是 64,Linux 将 MSL 设置为 30 秒,意味着 Linux 认为数据报文经过 64 个路由器的时间不会超过 30 秒,如果超过了,就认为报文已经消失在网络中了。

TIME_WAIT 等待 2 倍的 MSL,比较合理的解释是: 网络中可能存在来自发送方的数据包,当这些发送方的数据包被接收方处理后又会向对方发送响应,所以一来一回需要等待 2 倍的时间。

可以看到 2MSL时长 这其实是相当于至少允许报文丢失一次。比如,若 ACK 在一个 MSL 内丢失,这样被动方重发的 FIN 会在第 2 个 MSL 内到达,TIME_WAIT 状态的连接可以应对。

2MSL 的时间是从客户端接收到 FIN 后发送 ACK 开始计时的。如果在 TIME-WAIT 时间内,因为客户端的 ACK 没有传输到服务端,客户端又接收到了服务端重发的 FIN 报文,那么 2MSL 时间将重新计时。

为什么需要 TIME_WAIT 状态?

在 RFC 793 指出 TIME-WAIT 一个重要的作用是:

TIME-WAIT - represents waiting for enough time to pass to be sure the remote TCP received the acknowledgment of its connection termination request.

也就是说,TIME-WAIT 作用是等待足够的时间以确保最后的 ACK 能让被动关闭方接收,从而帮助其正常关闭。

假设客户端没有 TIME_WAIT 状态,而是在发完最后一次回 ACK 报文就直接进入 CLOSE 状态,如果该 ACK 报文丢失了,服务端则重传的 FIN 报文,而这时客户端已经进入到关闭状态了,客户端在收到服务端重传的 FIN 报文后,就会回 RST 报文。

服务端收到这个 RST 并将其解释为一个错误(Connection reset by peer),这对于一个可靠的协议来说不是一个优雅的终止方式。

为了防止这种情况出现,客户端必须等待足够长的时间,确保服务端能够收到 ACK,如果服务端没有收到 ACK,那么就会触发 TCP 重传机制,服务端会重新发送一个 FIN,这样一去一来刚好两个 MSL 的时间。

客户端在收到服务端重传的 FIN 报文时,TIME_WAIT 状态的等待时间,会重置回 2MSL。

TIME_WAIT 过多有什么危害?

  • 如果客户端(主动发起关闭连接)都是和「目的 IP+ 目的 PORT 」都一样的服务端建立连接的话,当客户端的 TIME_WAIT 状态连接过多的话,就会受端口资源限制,如果占满了所有端口资源,那么就无法再跟「目的 IP+ 目的 PORT」都一样的服务端建立连接了。(只要连接的是不同的服务端,端口是可以重复使用的)
  • 如果服务端(主动发起关闭连接)的 TIME_WAIT 状态过多,并不会导致端口资源受限,因为服务端只监听一个端口,而且由于一个四元组唯一确定一个 TCP 连接,因此理论上服务端可以建立很多连接,但是 TCP 连接过多,会占用系统资源,比如文件描述符、内存资源、CPU 资源、线程资源等。

如何优化 TIME_WAIT ?

这里给出优化 TIME-WAIT 的几个方式,都是有利有弊:

  • 打开 net.ipv4.tcp_tw_reuse 和 net.ipv4.tcp_timestamps 选项;
    • 复用处于 TIME_WAIT 的 socket 为新的连接所用。在调用 connect() 函数时,内核会随机找一个 time_wait 状态超过 1 秒的连接给新的连接复用。
  • net.ipv4.tcp_max_tw_buckets
    • 默认为 18000,当系统中处于 TIME_WAIT 的连接一旦超过这个值时,系统就会将后面的 TIME_WAIT 连接状态重置
  • 程序中使用 SO_LINGER ,应用强制使用 RST 关闭。
    • 如果l_onoff为非 0, 且l_linger值为 0,那么调用close后,会立该发送一个RST标志给对端,该 TCP 连接将跳过四次挥手,也就跳过了TIME_WAIT状态,直接关闭。

《UNIX网络编程》一书中却说道:TIME_WAIT 是我们的朋友,它是有助于我们的,不要试图避免这个状态,而是应该弄清楚它。

如果服务端要避免过多的 TIME_WAIT 状态的连接,就永远不要主动断开连接,让客户端去断开,由分布在各处的客户端去承受 TIME_WAIT。

服务器出现大量 TIME_WAIT 状态的原因有哪些?

首先要知道 TIME_WAIT 状态是主动关闭连接方才会出现的状态,所以如果服务器出现大量的 TIME_WAIT 状态的 TCP 连接,就是说明服务器主动断开了很多 TCP 连接。

问题来了,什么场景下服务端会主动断开连接呢?

  • 第一个场景:HTTP 没有使用长连接
  • 第二个场景:HTTP 长连接超时
  • 第三个场景:HTTP 长连接的请求数量达到上限

第一个场景:HTTP 没有使用长连接

在 HTTP/1.0 中默认是关闭的,如果浏览器要开启 Keep-Alive,它必须在请求的 header 中添加:Connection: Keep-Alive

然后当服务器收到请求,作出回应的时候,它也被添加到响应中 header 里

从 HTTP/1.1 开始, 就默认是开启了 Keep-Alive,现在大多数浏览器都默认是使用 HTTP/1.1,所以 Keep-Alive 都是默认打开的。一旦客户端和服务端达成协议,那么长连接就建立好了。

如果要关闭 HTTP Keep-Alive,需要在 HTTP 请求或者响应的 header 里添加 Connection:close 信息,也就是说,只要客户端和服务端任意一方的 HTTP header 中有 Connection:close 信息,那么就无法使用 HTTP 长连接的机制。

根据大多数 Web 服务的实现,不管哪一方禁用了 HTTP Keep-Alive,都是由服务端主动关闭连接,那么此时服务端上就会出现 TIME_WAIT 状态的连接。

可以排查下是否客户端和服务端都开启了 HTTP Keep-Alive。针对这个场景下,解决的方式也很简单,让客户端和服务端都开启 HTTP Keep-Alive 机制。

第二个场景:HTTP 长连接超时

HTTP 长连接的特点是,只要任意一端没有明确提出断开连接,则保持 TCP 连接状态。

HTTP 长连接可以在同一个 TCP 连接上接收和发送多个 HTTP 请求/应答,避免了连接建立和释放的开销。

如果使用了 HTTP 长连接,如果客户端完成一个 HTTP 请求后,就不再发起新的请求,此时这个 TCP 连接一直占用着不是挺浪费资源的吗?

所以为了避免资源浪费的情况,web 服务软件一般都会提供一个参数,用来指定 HTTP 长连接的超时时间,比如 nginx 提供的 keepalive_timeout 参数。

假设设置了 HTTP 长连接的超时时间是 60 秒,nginx 就会启动一个「定时器」,如果客户端在完后一个 HTTP 请求后,在 60 秒内都没有再发起新的请求,定时器的时间一到,nginx 就会触发回调函数来关闭该连接,那么此时服务端(nginx)上就会出现 TIME_WAIT 状态的连接。

可以往网络问题的方向排查,比如是否是因为网络问题,导致客户端发送的数据一直没有被服务端接收到,以至于 HTTP 长连接超时。

第三个场景:HTTP 长连接的请求数量达到上限

 

Web 服务端通常会有个参数,来定义一条 HTTP 长连接上最大能处理的请求数量,当超过最大限制时,就会主动关闭连接。

 

比如 nginx 的 keepalive_requests 这个参数,这个参数是指一个 HTTP 长连接建立之后,nginx 就会为这个连接设置一个计数器,记录这个 HTTP 长连接上已经接收并处理的客户端请求的数量。如果达到这个参数设置的最大值时,则 nginx 会主动关闭这个长连接,那么此时服务端上就会出现 TIME_WAIT 状态的连接。

对于一些 QPS 比较高的场景,比如超过 10000 QPS,甚至达到 30000 , 50000 甚至更高,如果 keepalive_requests 参数值是 100,这时候就 nginx 就会很频繁地关闭连接,那么此时服务端上就会出大量的 TIME_WAIT 状态。

针对这个场景下,解决的方式也很简单,调大 nginx 的 keepalive_requests 参数就行。

 

 

服务器出现大量 CLOSE_WAIT 状态的原因有哪些?

CLOSE_WAIT 状态是「被动关闭方」才会有的状态,如果「被动关闭方」收到主动断开连接的请求后,没有调用 close 函数关闭连接,那么就无法发出 FIN 报文,从而无法使得 CLOSE_WAIT 状态的连接转变为 LAST_ACK 状态。

那什么情况会导致服务端的程序没有调用 close 函数关闭连接?这时候通常需要排查代码。

 

  1. 创建服务端 socket,bind 绑定端口、listen 监听端口
  2. 将服务端 socket 注册到 epoll
  3. epoll_wait 等待连接到来,连接到来时,调用 accpet 获取已连接的 socket
  4. 将已连接的 socket 注册到 epoll
  5. epoll_wait 等待事件发生
  6. 对方连接关闭时,我方调用 close

 

可能导致服务端没有调用 close 函数的原因,如下:

 

  • 没有将服务端 socket 注册到 epoll。这种属于明显的代码逻辑 bug。
  • 有新连接到来时没有调用 accpet 获取该连接的 socket。在执行 accpet 函数之前,代码卡在某一个逻辑或者提前抛出了异常。
  • 通过 accpet 获取已连接的 socket 后,没有将其注册到 epoll。服务端在将已连接的 socket 注册到 epoll 之前,代码卡在某一个逻辑或者提前抛出了异常。
  • 客户端关闭连接后,服务端没有执行 close 函数,可能是因为代码漏处理,或者是在执行 close 函数之前,代码卡在某一个逻辑,比如发生死锁等等。

 

如果已经建立了连接,但是客户端突然出现故障了怎么办?

客户端出现故障指的是客户端的主机发生了宕机,或者断电的场景。发生这种情况的时候,如果服务端一直不会发送数据给客户端,那么服务端是永远无法感知到客户端宕机这个事件的,也就是服务端的 TCP 连接将一直处于 ESTABLISH 状态,占用着系统资源。

为了避免这种情况,TCP 搞了个保活机制。这个机制的原理是这样的:

  • tcp_keepalive_time=7200:表示保活时间是 7200 秒(2小时),也就 2 小时内如果没有任何连接相关的活动,则会启动保活机制
  • tcp_keepalive_intvl=75:表示每次检测间隔 75 秒;
  • tcp_keepalive_probes=9:表示检测 9 次无响应,认为对方是不可达的,从而中断本次的连接。

也就是说在 Linux 系统中,最少需要经过 2 小时 11 分 15 秒(7200+75*9)才可以发现一个「死亡」连接。

如果开启了 TCP 保活,需要考虑以下几种情况:

  • 第一种,对端程序是正常工作的。当 TCP 保活的探测报文发送给对端, 对端会正常响应,这样 TCP 保活时间会被重置,等待下一个 TCP 保活时间的到来。

  • 第二种,对端主机宕机并重启。当 TCP 保活的探测报文发送给对端后,对端是可以响应的,但由于没有该连接的有效信息,会产生一个 RST 报文,这样很快就会发现 TCP 连接已经被重置。

  • 第三种,是对端主机宕机注意不是进程崩溃,进程崩溃后操作系统在回收进程资源的时候,会发送 FIN 报文,而主机宕机则是无法感知的,所以需要 TCP 保活机制来探测对方是不是发生了主机宕机),或对端由于其他原因导致报文不可达。当 TCP 保活的探测报文发送给对端后,石沉大海,没有响应,连续几次,达到保活探测次数后,TCP 会报告该 TCP 连接已经死亡。

TCP 保活的这个机制检测的时间是有点长,我们可以自己在应用层实现一个心跳机制。

比如,web 服务软件一般都会提供 keepalive_timeout 参数,用来指定 HTTP 长连接的超时时间。如果设置了 HTTP 长连接的超时时间是 60 秒,web 服务软件就会启动一个定时器,如果客户端在完成一个 HTTP 请求后,在 60 秒内都没有再发起新的请求,定时器的时间一到,就会触发回调函数来释放该连接。

如果已经建立了连接,但是服务端的进程崩溃会发生什么?

 

标签:重传,报文,TCP,关闭,连接,服务端,客户端
From: https://www.cnblogs.com/suBlog/p/17646338.html

相关文章

  • facebook-wda windows 连接iOS失败原因之一
    由于虚拟环境进行了重新安装,导致wda连接失败报错原因如下:raiseConnectionError("socketconnectionbroken")ConnectionError:socketconnectionbroken[I23082115:29:51_device:1106]xctrunnerquited[W23082115:29:51device:925]WebDriverAgentRunnerquitted ......
  • Visual Studio 2022 连接MySQL 查询表中数据
     注:①MySqlConnection是用于与MySQL数据库进行连接和交互的类。它位于MySql.Data.MySqlClient命名空间中。    ②builder.ConnectionString返回一个包含连接字符串的字符串,这个连接字符串是通过使用MySqlConnectionStringBuilder对象构建的。连接字符串包含了......
  • net6的情况下遇到连接数据库问题
    最近做后端需要访问数据库,然后想用net6做一个webapimysql的话nuget上装mysql.data 这个sqlserver的话和以前的区别是以前用 System.Data.SqlClient,现在要nuget上装 这个 Microsoft.Data.SqlClient连接数据库用我比较熟悉的Dapper 目前用sqlserver数据库然后Con......
  • 测试使用QT来连接SQLServer并取出表格数据
    测试使用QT来连接SQLServer并取出表格数据添加引用工程文件需要加入 QT+=sql在main.cpp添加头文件引用//添加头文件#include<qdebug.h>#include<QSqlDatabase>#include<QSqlError>#include<QSqlQuery>连接数据库QSqlDatabasedb=QSqlDatabase::addDatabase("QODBC");......
  • TiDB的连接&目录结构
    TiDB完全兼容MySQL5.7链接协议,所以可以使用mysql客户端来连接,默认端口是4000[root@svr101~]#mysql-uroot-h192.168.31.102-P4000-pEnterpassword:WelcometotheMySQLmonitor.Commandsendwith;or\g.YourMySQLconnectionidis419Serverversion:5.7.25-......
  • 深入研究高性能数据库连接池的实现原理与优化策略
    在现代的后端应用开发中,数据库连接池是提高性能和可伸缩性的关键组件之一。本文将深入探讨数据库连接池的实现原理,涵盖Java和Python示例,并介绍一些常见的连接池优化策略。数据库连接池的作用数据库连接池是一种维护和管理数据库连接的技术,它通过预先创建一组数据库连接,并将这些连接......
  • 解决Windows远程桌面“由于安全设置错误, 客户端无法连接到远程计算机”
    用windows2008远程桌面连接Ubuntu系统,出现如下错误: 但我用win10可以进入登录界面,查了一下,需要修改安全策略,设置为如下: 参考资料:https://it.cha138.com/python/show-1249300.html ......
  • ⛳ TCP 协议详解
    ⛳TCP协议详解TCP/IP协议包含了一系列的协议,也叫TCP/IP协议族(TCP/IPProtocolSuite,或TCP/IPProtocols),简称TCP/IP。TCP/IP协议族提供了点对点的连接机制,并且将传输数据帧的封装、寻址、传输、路由以及接受方式,都予以标准化。......
  • Nomachine远程连接Nvidia Jetson NX
    Nomachine远程连接NvidiaJetsonNX目录Nomachine远程连接NvidiaJetsonNXNoMachine安装NX环境Windows环境网线共享网络NX环境Windows环境连接操作其他问题:网线连接时电脑无需自带网络尝试解决无法连接NX调车指南分辨率设置电脑有网络时,NX无法联网NoMachine安装NX环境将nom......
  • TCP三次握手
    TCP是什么TCP是面向连接的协议,它基于运输连接来传送TCP报文段,TCP运输连接的建立和释放,是每一次面向连接的通信中必不可少的过程。TCP运输连接有以下三个阶段:建立TCP连接,也就是通过三报文握手来建立TCP连接。数据传送,也就是基于已建立的TCP连接进行可靠的数据传输。释放连接,......