6.1 链路追踪介绍
在大型系统的微服务化构建中,一个系统被拆分成了许多模块。这些模块负责不同的功能,组合成
系统,最终可以提供丰富的功能。在这种架构中,一次请求往往需要涉及到多个服务。互联网应用构建
在不同的软件模块集上,这些软件模块,有可能是由不同的团队开发、可能使用不同的编程语言来实
现、有可能布在了几千台服务器,横跨多个不同的数据中心,也就意味着这种架构形式也会存在一些问题:
如何快速发现问题?
如何判断故障影响范围?
如何梳理服务依赖以及依赖的合理性?
如何分析链路性能问题以及实时容量规划?
分布式链路追踪(Distributed Tracing),就是将一次分布式请求还原成调用链路,进行日志记
录,性能监控并将一次分布式请求的调用情况集中展示。比如各个服务节点上的耗时、请求具体到达哪 台机器上、每个服务节点的请求状态等等。
常见的链路追踪技术有下面这些:
cat 由大众点评开源,基于Java开发的实时应用监控平台,包括实时应用监控,业务监控 。 集成
方案是通过代码埋点的方式来实现监控,比如: 拦截器,过滤器等。 对代码的侵入性很大,集成 成本较高。风险较大。
zipkin 由Twitter公司开源,开放源代码分布式的跟踪系统,用于收集服务的定时数据,以解决微
服务架构中的延迟问题,包括:数据的收集、存储、查找和展现。该产品结合spring-cloud-sleuth 使用较为简单, 集成很方便, 但是功能较简单。
pinpoint Pinpoint是韩国人开源的基于字节码注入的调用链分析,以及应用监控分析工具。特点
是支持多种插件,UI功能强大,接入端无代码侵入。
skywalking
SkyWalking是本土开源的基于字节码注入的调用链分析,以及应用监控分析工具。特点是支持多 种插件,UI功能较强,接入端无代码侵入。目前已加入Apache孵化器。
Sleuth
SpringCloud 提供的分布式系统中链路追踪解决方案。
注意:SpringCloud alibaba技术栈中并没有提供自己的链路追踪技术的,我们可以采用Sleuth + Zinkin来做链路追踪解决方案
6.2 Sleuth入门
6.2.1 Sleuth介绍
SpringCloud Sleuth主要功能就是在分布式系统中提供追踪解决方案。它大量借用了Google Dapper的设计, 先来了解一下Sleuth中的术语和相关概念。
Trace
由一组Trace Id相同的Span串联形成一个树状结构。为了实现请求跟踪,当请求到达分布式系统的 入口端点时,只需要服务跟踪框架为该请求创建一个唯一的标识(即TraceId),同时在分布式系 统内部流转的时候,框架始终保持传递该唯一值,直到整个请求的返回。那么我们就可以使用该唯 一标识将所有的请求串联起来,形成一条完整的请求链路。
Span 代表了一组基本的工作单元。为了统计各处理单元的延迟,当请求到达各个服务组件的时
候,也通过一个唯一标识(SpanId)来标记它的开始、具体过程和结束。通过SpanId的开始和结 束时间戳,就能统计该span的调用时间,除此之外,我们还可以获取如事件的名称。请求信息等 元数据。
Annotation 用它记录一段时间内的事件,内部使用的重要注释: cs(Client Send)客户端发出请求,开始一个请求的生命
sr(Server Received)服务端接受到请求开始进行处理, sr-cs = 网络延迟(服务调用的时间) ss(Server Send)服务端处理完毕准备发送到客户端,ss - sr = 服务器上的请求处理时间 cr(Client Reveived)客户端接受到服务端的响应,请求结束。 cr - sr = 请求的总时间
6.2.2 Sleuth入门
微服务名称, traceId, spanid,是否将链路的追踪结果输出到第三方平台
接下来通过之前的项目案例整合Sleuth,完成入门案例的编写。
修改父工程引入Sleuth依赖
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
启动微服务,调用之后,我们可以在控制台观察到sleuth的日志输出
其中 33a7fe88b6500161是TraceId,4e06a3940fd8ddf5 是SpanId,依次调用有一个全局的
TraceId,将调用链路串起来。仔细分析每个微服务的日志,不难看出请求的具体过程。
查看日志文件并不是一个很好的方法,当微服务越来越多日志文件也会越来越多,通过Zipkin可以 将日志聚合,并进行可视化展示和全文检索。
6.3 Zipkin的集成
6.3.1 ZipKin介绍
Zipkin 是 Twitter 的一个开源项目,它基于Google Dapper实现,它致力于收集服务的定时数据, 以解决微服务架构中的延迟问题,包括数据的收集、存储、查找和展现。
我们可以使用它来收集各个服务器上请求链路的跟踪数据,并通过它提供的REST API接口来辅助我 们查询跟踪数据以实现对分布式系统的监控程序,
从而及时地发现系统中出现的延迟升高问题并找出系 统性能瓶颈的根源。
除了面向开发的 API 接口之外,它也提供了方便的UI组件来帮助我们直观的搜索跟踪信息和分析请 求链路明细,
比如:可以查询某段时间内各用户请求的处理时间等。
Zipkin 提供了可插拔数据存储方式:In-Memory、MySql、Cassandra 以及 Elasticsearch。
上图展示了 Zipkin 的基础架构,它主要由 4 个核心组件构成:
Collector:收集器组件,它主要用于处理从外部系统发送过来的跟踪信息,将这些信息转换为
Zipkin内部处理的 Span 格式,以支持后续的存储、分析、展示等功能。 Storage:存储组件,它主要对处理收集器接收到的跟踪信息,默认会将这些信息存储在内存中, 我们也可以修改此存储策略,通过使用其他存储组件将跟踪信息存储到数据库中。
RESTful API:API 组件,它主要用来提供外部访问接口。比如给客户端展示跟踪信息,或是外接 系统访问以实现监控等。
Web UI:UI 组件, 基于API组件实现的上层应用。通过UI组件用户可以方便而有直观地查询和分 析跟踪信息。
Zipkin分为两端,一个是 Zipkin服务端,一个是 Zipkin客户端,客户端也就是微服务的应用。 客户端会 配置服务端的 URL 地址,一旦发生服务间的调用的时候,会被配置在微服务里面的 Sleuth 的监听器监 听,并生成相应的 Trace 和 Span 信息发送给服务端。
6.3.2 ZipKin服务端安装
第1步: 下载ZipKin的jar包:
https://search.maven.org/remote_content?g=io.zipkin.java&a=zipkin- server&v=LATEST&c=exec
访问上面的网址,即可得到一个jar包,这就是ZipKin服务端的jar包
第2步: 通过命令行,输入下面的命令启动ZipKin Server
java -jar zipkin-server-2.12.9-exec.jar
第3步:通过浏览器访问 http://localhost:9411访问
6.3.13 Zipkin客户端集成
ZipKin客户端和Sleuth的集成非常简单,只需要在微服务中添加其依赖和配置即可。
第1步:在每个微服务上添加依赖,这里可以在父工程添加依赖:
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>
第2步:依次在微服务项目:shop-product、shop-order、api-gateway的yml文件中添加配置:
spring:
zipkin:
base-url: http://127.0.0.1:9411/ #zipkin server的请求地址
discoveryClientEnabled: false #让nacos把它当成一个URL,而不要当做服务
sleuth:
sampler:
probability: 1.0 #采样的百分比
第3步: 访问微服务
http://localhost:7000/order-serv/order/prod/1
第4步: 访问zipkin的UI界面,观察效果
第5步:点击其中一条记录,可观察一次访问的详细线路。
6.4 ZipKin数据持久
Zipkin Server默认会将追踪数据信息保存到内存,但这种方式不适合生产环境。Zipkin支持将追踪数据持久化到mysql数据库或elasticsearch中。
6.4.1 使用mysql实现数据持久化
第1步: 创建mysql数据环境:首先创建数据库:zipkin
然后在数据库zipkin执行数据库脚本:
CREATE TABLE IF NOT EXISTS zipkin_spans (
`trace_id_high` BIGINT NOT NULL DEFAULT 0 COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit',
`trace_id` BIGINT NOT NULL,
`id` BIGINT NOT NULL,
`name` VARCHAR (255) NOT NULL,
`parent_id` BIGINT,
`debug` BIT (1),
`start_ts` BIGINT COMMENT 'Span.timestamp(): epoch micros used for endTs query and to implement TTL',
`duration` BIGINT COMMENT 'Span.duration(): micros used for minDuration and maxDuration query'
) ENGINE = INNODB ROW_FORMAT = COMPRESSED CHARACTER SET = utf8 COLLATE utf8_general_ci ;
ALTER TABLE zipkin_spans
ADD UNIQUE KEY (`trace_id_high`, `trace_id`, `id`) COMMENT 'ignore insert on duplicate' ;
ALTER TABLE zipkin_spans
ADD INDEX (`trace_id_high`, `trace_id`, `id`) COMMENT 'for joining with zipkin_annotations' ;
ALTER TABLE zipkin_spans
ADD INDEX (`trace_id_high`, `trace_id`) COMMENT 'for getTracesByIds' ;
ALTER TABLE zipkin_spans
ADD INDEX (`name`) COMMENT 'for getTraces and getSpanNames' ;
ALTER TABLE zipkin_spans
ADD INDEX (`start_ts`) COMMENT 'for getTraces ordering and range' ;
CREATE TABLE IF NOT EXISTS zipkin_annotations (
`trace_id_high` BIGINT NOT NULL DEFAULT 0 COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit',
`trace_id` BIGINT NOT NULL COMMENT 'coincides with zipkin_spans.trace_id',
`span_id` BIGINT NOT NULL COMMENT 'coincides with zipkin_spans.id',
`a_key` VARCHAR (255) NOT NULL COMMENT 'BinaryAnnotation.key or Annotation.value if type == -1',
`a_value` BLOB COMMENT 'BinaryAnnotation.value(), which must be smaller than 64KB',
`a_type` INT NOT NULL COMMENT 'BinaryAnnotation.type() or -1 if Annotation',
`a_timestamp` BIGINT COMMENT 'Used to implement TTL; Annotation.timestamp or zipkin_spans.timestamp',
`endpoint_ipv4` INT COMMENT 'Null when Binary/Annotation.endpoint is
null',
`endpoint_ipv6` BINARY(16) COMMENT 'Null when Binary/Annotation.endpoint
is null, or no IPv6 address',
`endpoint_port` SMALLINT COMMENT 'Null when Binary/Annotation.endpoint is null',
`endpoint_service_name` VARCHAR (255) COMMENT 'Null when Binary/Annotation.endpoint is null'
) ENGINE = INNODB ROW_FORMAT = COMPRESSED CHARACTER SET = utf8 COLLATE utf8_general_ci ;
ALTER TABLE zipkin_annotations
ADD UNIQUE KEY (
`trace_id_high`,
`trace_id`,
`span_id`,
`a_key`,
`a_timestamp`
) COMMENT 'Ignore insert on duplicate' ;
ALTER TABLE zipkin_annotations
ADD INDEX (
`trace_id_high`,
`trace_id`,
`span_id`
) COMMENT 'for joining with zipkin_spans' ;
ALTER TABLE zipkin_annotations
ADD INDEX (`trace_id_high`, `trace_id`) COMMENT 'for getTraces/ByIds' ;
ALTER TABLE zipkin_annotations
ADD INDEX (`endpoint_service_name`) COMMENT 'for getTraces and getServiceNames' ;
ALTER TABLE zipkin_annotations
ADD INDEX (`a_type`) COMMENT 'for getTraces' ;
ALTER TABLE zipkin_annotations
ADD INDEX (`a_key`) COMMENT 'for getTraces' ;
ALTER TABLE zipkin_annotations
ADD INDEX (`trace_id`, `span_id`, `a_key`) COMMENT 'for dependencies job' ;
CREATE TABLE IF NOT EXISTS zipkin_dependencies (
`day` DATE NOT NULL,
`parent` VARCHAR (255) NOT NULL,
`child` VARCHAR (255) NOT NULL,
`call_count` BIGINT
) ENGINE = INNODB ROW_FORMAT = COMPRESSED CHARACTER SET = utf8 COLLATE utf8_general_ci ;
ALTER TABLE zipkin_dependencies ADD UNIQUE KEY (`day`, `parent`, `child`) ;
第2步: 在启动ZipKin Server的时候,指定数据保存的mysql的信息
java -jar zipkin-server-2.12.9-exec.jar --STORAGE_TYPE=mysql -- MYSQL_HOST=127.0.0.1 --MYSQL_TCP_PORT=3306 --MYSQL_DB=zipkin --MYSQL_USER=root --MYSQL_PASS=root
第3步: 然后在浏览器输入:http://localhost:7000/order-serv/order/prod/1
第4步: 执行第二部动作 在重启一下ZipKin Server 这时候可以看到 步骤3的数据还在。
6.4.2 使用elasticsearch实现数据持久化
第1步: 下载elasticsearch
下载地址:https://www.elastic.co/cn/downloads/past-releases/elasticsearch-6-8-4
第2步: 启动elasticsearch
第3步: 在启动ZipKin Server的时候,指定数据保存的elasticsearch的信息
启动之前,为了不影响我们可以把之前的mysql数据删掉
java -jar zipkin-server-2.12.9-exec.jar --STORAGE_TYPE=elasticsearch --ESHOST=localhost:9200
第4步:在浏览器输入:http://localhost:7000/order-serv/order/prod/1
然后查看zipkin 客户端查看链路。 执行第二部动作 在重启一下ZipKin Server 这时候可以看到 步骤4的数据还在。
标签:COMMENT,Sleuth,trace,zipkin,--,链路,TABLE,id From: https://www.cnblogs.com/eagle888/p/17642678.html