开始分析
根据海量的应用数据作为训练样本,基于提供的样本构建模型,预测用户的新增情况。
赛题数据由约62万条训练集、20万条测试集数据组成,共包含13个字段。其中uuid为样本唯一标识,eid为访问行为ID,udmap为行为属性,其中的key1到key9表示不同的行为属性,如项目名、项目id等相关字段,common_ts为应用访问记录发生时间(毫秒时间戳),其余字段x1至x8为用户相关的属性,为匿名处理字段。target字段为预测目标,即是否为新增用户。
基于训练集的样本数据,构建一个模型来预测测试集中用户的新增情况。这是一个二分类任务,其中目标是根据用户的行为、属性以及访问时间等特征,预测该用户是否属于新增用户。具体来说,选手需要利用给定的数据集进行特征工程、模型选择和训练,然后使用训练好的模型对测试集中的用户进行预测,并生成相应的预测结果。
Baseline选择使用机器学习方法,在解决机器学习问题时,一般会遵循以下流程:
赛题是一个典型的数据挖掘的比赛,需要人工提取特征并构建模型,并且特征差异将会带来很大分数差异。
下面是基础版本的Baseline.
import pandas as pd
import numpy as np
train_data = pd.read_csv('用户新增预测挑战赛公开数据/train.csv')
test_data = pd.read_csv('用户新增预测挑战赛公开数据/test.csv')
train_data['common_ts'] = pd.to_datetime(train_data['common_ts'], unit='ms')
test_data['common_ts'] = pd.to_datetime(test_data['common_ts'], unit='ms')
def udmap_onethot(d):
v = np.zeros(9)
if d == 'unknown':
return v
d = eval(d)
for i in range(1, 10):
if 'key' + str(i) in d:
v[i-1] = d['key' + str(i)]
return v
train_udmap_df = pd.DataFrame(np.vstack(train_data['udmap'].apply(udmap_onethot)))
test_udmap_df = pd.DataFrame(np.vstack(test_data['udmap'].apply(udmap_onethot)))
train_udmap_df.columns = ['key' + str(i) for i in range(1, 10)]
test_udmap_df.columns = ['key' + str(i) for i in range(1, 10)]
train_data = pd.concat([train_data, train_udmap_df], axis=1)
test_data = pd.concat([test_data, test_udmap_df], axis=1)
train_data['eid_freq'] = train_data['eid'].map(train_data['eid'].value_counts())
test_data['eid_freq'] = test_data['eid'].map(train_data['eid'].value_counts())
train_data['eid_mean'] = train_data['eid'].map(train_data.groupby('eid')['target'].mean())
test_data['eid_mean'] = test_data['eid'].map(train_data.groupby('eid')['target'].mean())
train_data['udmap_isunknown'] = (train_data['udmap'] == 'unknown').astype(int)
test_data['udmap_isunknown'] = (test_data['udmap'] == 'unknown').astype(int)
train_data['common_ts_hour'] = train_data['common_ts'].dt.hour
test_data['common_ts_hour'] = test_data['common_ts'].dt.hour
import lightgbm as lgb
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier()
clf.fit(
train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1),
train_data['target']
)
pd.DataFrame({
'uuid': test_data['uuid'],
'target': clf.predict(test_data.drop(['udmap', 'common_ts', 'uuid'], axis=1))
}).to_csv('submit.csv', index=None)
实践步骤
- 导入库:首先,代码导入了需要用到的库,包括
pandas
(用于数据处理和分析)和DecisionTreeClassifier
(决策树分类器)等。 - 读取数据:代码通过使用
pd.read_csv
函数从文件中读取训练集和测试集数据,并将其存储在train_data
和test_data
两个数据框中。 - 特征工程:
- udmap_onethot
函数将原始的 udmap
特征进行了预处理,将其转换为一个长度为9的向量,表示每个key是否存在。
- 对 udmap
特征进行编码,生成 udmap_isunknown
特征,表示该特征是否为空。
- 将处理后的 udmap
特征与原始数据拼接起来,形成新的数据框。
- 提取 eid
特征的频次(出现次数)和均值,并添加为新的特征。
- 使用时间戳 common_ts
提取小时部分,生成 common_ts_hour
特征。
- 决策树模型训练和预测:
- 创建了一个 DecisionTreeClassifier
的实例,即决策树分类器。
- 使用 fit
函数对训练集中的特征和目标进行拟合,训练了决策树模型。
- 对测试集使用已训练的模型进行预测,得到预测结果。
- 将预测结果和相应的 uuid
组成一个DataFrame,并将其保存到 submit.csv
文件中。
实践代码:
# 1. 导入需要用到的相关库
# 导入 pandas 库,用于数据处理和分析
import pandas as pd
# 导入 numpy 库,用于科学计算和多维数组操作
import numpy as np
# 从 sklearn.tree 模块中导入 DecisionTreeClassifier 类
# DecisionTreeClassifier 用于构建决策树分类模型
from sklearn.tree import DecisionTreeClassifier
# 2. 读取训练集和测试集
# 使用 read_csv() 函数从文件中读取训练集数据,文件名为 'train.csv'
train_data = pd.read_csv('用户新增预测挑战赛公开数据/train.csv')
# 使用 read_csv() 函数从文件中读取测试集数据,文件名为 'test.csv'
test_data = pd.read_csv('用户新增预测挑战赛公开数据/test.csv')
# 3. 将 'udmap' 列进行 One-Hot 编码
# 数据样例:
# udmap key1 key2 key3 key4 key5 key6 key7 key8 key9
# 0 {'key1': 2} 2 0 0 0 0 0 0 0 0
# 1 {'key2': 1} 0 1 0 0 0 0 0 0 0
# 2 {'key1': 3, 'key2': 2} 3 2 0 0 0 0 0 0 0
# 在 python 中, 形如 {'key1': 3, 'key2': 2} 格式的为字典类型对象, 通过key-value键值对的方式存储
# 而在本数据集中, udmap实际是以字符的形式存储, 所以处理时需要先用eval 函数将'udmap' 解析为字典
# 具体实现代码:
# 定义函数 udmap_onethot,用于将 'udmap' 列进行 One-Hot 编码
def udmap_onethot(d):
v = np.zeros(9) # 创建一个长度为 9 的零数组
if d == 'unknown': # 如果 'udmap' 的值是 'unknown'
return v # 返回零数组
d = eval(d) # 将 'udmap' 的值解析为一个字典
for i in range(1, 10): # 遍历 'key1' 到 'key9', 注意, 这里不包括10本身
if 'key' + str(i) in d: # 如果当前键存在于字典中
v[i-1] = d['key' + str(i)] # 将字典中的值存储在对应的索引位置上
return v # 返回 One-Hot 编码后的数组
# 注: 对于不理解的步骤, 可以逐行 print 内容查看
# 使用 apply() 方法将 udmap_onethot 函数应用于每个样本的 'udmap' 列
# np.vstack() 用于将结果堆叠成一个数组
train_udmap_df = pd.DataFrame(np.vstack(train_data['udmap'].apply(udmap_onethot)))
test_udmap_df = pd.DataFrame(np.vstack(test_data['udmap'].apply(udmap_onethot)))
# 为新的特征 DataFrame 命名列名
train_udmap_df.columns = ['key' + str(i) for i in range(1, 10)]
test_udmap_df.columns = ['key' + str(i) for i in range(1, 10)]
# 将编码后的 udmap 特征与原始数据进行拼接,沿着列方向拼接
train_data = pd.concat([train_data, train_udmap_df], axis=1)
test_data = pd.concat([test_data, test_udmap_df], axis=1)
# 4. 编码 udmap 是否为空
# 使用比较运算符将每个样本的 'udmap' 列与字符串 'unknown' 进行比较,返回一个布尔值的 Series
# 使用 astype(int) 将布尔值转换为整数(0 或 1),以便进行后续的数值计算和分析
train_data['udmap_isunknown'] = (train_data['udmap'] == 'unknown').astype(int)
test_data['udmap_isunknown'] = (test_data['udmap'] == 'unknown').astype(int)
# 5. 提取 eid 的频次特征
# 使用 map() 方法将每个样本的 eid 映射到训练数据中 eid 的频次计数
# train_data['eid'].value_counts() 返回每个 eid 出现的频次计数
train_data['eid_freq'] = train_data['eid'].map(train_data['eid'].value_counts())
test_data['eid_freq'] = test_data['eid'].map(train_data['eid'].value_counts())
# 6. 提取 eid 的标签特征
# 使用 groupby() 方法按照 eid 进行分组,然后计算每个 eid 分组的目标值均值
# train_data.groupby('eid')['target'].mean() 返回每个 eid 分组的目标值均值
train_data['eid_mean'] = train_data['eid'].map(train_data.groupby('eid')['target'].mean())
test_data['eid_mean'] = test_data['eid'].map(train_data.groupby('eid')['target'].mean())
# 7. 提取时间戳
# 使用 pd.to_datetime() 函数将时间戳列转换为 datetime 类型
# 样例:1678932546000->2023-03-15 15:14:16
# 注: 需要注意时间戳的长度, 如果是13位则unit 为 毫秒, 如果是10位则为 秒, 这是转时间戳时容易踩的坑
# 具体实现代码:
train_data['common_ts'] = pd.to_datetime(train_data['common_ts'], unit='ms')
test_data['common_ts'] = pd.to_datetime(test_data['common_ts'], unit='ms')
# 使用 dt.hour 属性从 datetime 列中提取小时信息,并将提取的小时信息存储在新的列 'common_ts_hour'
train_data['common_ts_hour'] = train_data['common_ts'].dt.hour
test_data['common_ts_hour'] = test_data['common_ts'].dt.hour
# 8. 加载决策树模型进行训练(直接使用sklearn中导入的包进行模型建立)
clf = DecisionTreeClassifier()
# 使用 fit 方法训练模型
# train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1) 从训练数据集中移除列 'udmap', 'common_ts', 'uuid', 'target'
# 这些列可能是特征或标签,取决于数据集的设置
# train_data['target'] 是训练数据集中的标签列,它包含了每个样本的目标值
clf.fit(
train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1), # 特征数据:移除指定的列作为特征
train_data['target'] # 目标数据:将 'target' 列作为模型的目标进行训练
)
# 9. 对测试集进行预测,并保存结果到result_df中
# 创建一个DataFrame来存储预测结果,其中包括两列:'uuid' 和 'target'
# 'uuid' 列来自测试数据集中的 'uuid' 列,'target' 列将用来存储模型的预测结果
result_df = pd.DataFrame({
'uuid': test_data['uuid'], # 使用测试数据集中的 'uuid' 列作为 'uuid' 列的值
'target': clf.predict(test_data.drop(['udmap', 'common_ts', 'uuid'], axis=1)) # 使用模型 clf 对测试数据集进行预测,并将预测结果存储在 'target' 列中
})
# 10. 保存结果文件到本地
# 将结果DataFrame保存为一个CSV文件,文件名为 'submit.csv'
# 参数 index=None 表示不将DataFrame的索引写入文件中
result_df.to_csv('submit.csv', index=None)
运行流程
这里在百度飞桨AI Studio上面来运行:
启动环境,下面是初始界面,开始运行:
开始运行,等待结束后生成submit.csv文件:
在提交界面去提交结果得到分数: