LCS
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 417 Accepted Submission(s): 216
Problem Description
{a1,a2,...,an} and {b1,b2,...,bn}. Both sequences are permutation of {1,2,...,n}. You are going to find another permutation {p1,p2,...,pn} such that the length of LCS (longest common subsequence) of {ap1,ap2,...,apn} and {bp1,bp2,...,bpn}
Input
T, indicating the number of test cases. For each test case:
The first line contains an integer
n(1≤n≤105) - the length of the permutation. The second line contains
n integers
a1,a2,...,an. The third line contains
nintegers
b1,b2,...,bn.
The sum of
n in the test cases will not exceed
2×106.
Output
For each test case, output the maximum length of LCS.
Sample Input
2 3 1 2 3 3 2 1 6 1 5 3 2 6 4 3 6 2 4 5 1
Sample Output
2 4
//因为要形成最大的LCS 所以第二组的排列方式
// 1 4 2 3 5 6
// 3 1 4 2 6 5
//由于下标要相同 所以看成边 就变成求各个回路中的顶点个数
#include <stdio.h>
#include <string.h>
using namespace std;
const int maxn=100000+10;
int ans,res;
struct Node //边太多用邻接表
{
int v;
int next;
}edge[maxn];
int pre[maxn],vis[maxn];
void add(int u,int v,int index)
{
edge[index].v=v;
edge[index].next=pre[u];
pre[u]=index;
}
int a[maxn];
int b[maxn];
void dfs(int v)
{
if(vis[v])return;
vis[v]=1;
res++;
for(int i=pre[v];i!=-1;i=edge[i].next)
{
int t=edge[i].v;
dfs(t);
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
memset(pre,-1,sizeof(pre));
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)
scanf("%d",a+i);
int index=1;
for(int k=1;k<=n;k++)
{
scanf("%d",b+k);
add(a[k],b[k],index);
index++;
}
ans=0;
for(int i=1;i<=n;i++)
{
res=0;
if(!vis[i])
dfs(i);
if(res==1)
ans+=1;
else if(res)
ans+=res-1;
}
printf("%d\n",ans);
}
return 0;
}
标签:pre,...,HDU,int,dfs,vis,edge,maxn,5495 From: https://blog.51cto.com/u_3936220/7091392