首页 > 其他分享 >JVM性能监控和调优

JVM性能监控和调优

时间:2023-08-11 17:11:21浏览次数:49  
标签:Java JVM XX 调优 线程 内存 监控 GC 日志

JVM性能监控和调优

JVM(Java虚拟机)调优是为了优化Java应用程序的性能和稳定性。JVM调优的目的是通过调整JVM的配置参数和优化应用程序代码,使其在给定的硬件和软件环境下达到更好的性能表现。防止出现OOM,进行JVM规划和预调优,解决程序中出现的各种OOM,减少FullGC出现的频率,解决运行慢、卡顿等问题。

性能优化的步骤

第1步:熟悉业务场景

第2步(发现问题):性能监控

  • GC 频繁

  • cpu load过高

  • OOM

  • 内存泄漏

  • 死锁

  • 程序响应时间较长

第3步(排查问题):性能分析

  • 打印GC日志,通过GCviewer或者 http://gceasy.io来分析日志信息

  • 灵活运用 命令行工具,jstack,jmap,jinfo等

  • dump出堆文件,使用内存分析工具分析文件,比如jconsole/ jvisualvm / jprofiler / MAT

  • 使用阿里Arthas,或jconsole,JVisualVM来实时查看JVM状态

  • jstack查看堆栈信息

第4步(解决问题):性能调优

  • 适当增加内存,根据业务背景选择垃圾回收器

  • 优化代码,控制内存使用

  • 增加机器,分散节点压力

  • 合理设置线程池线程数量

  • 使用中间件提高程序效率,比如缓存,消息队列等

GC日志分析

GC日志参数

-verbose:gc 输出gc日志信息,默认输出到标准输出
-XX:+PrintGC 输出GC日志。类似:-verbose:gc
-XX:+PrintGCDetails  在发生垃圾回收时打印内存回收详细的日志,并在进程退出时输出当前内存各区域分配情况
-XX:+PrintGCTimeStamps 输出GC发生时的时间戳
-XX:+PrintGCDateStamps  输出GC发生时的时间戳(以日期的形式,如 2013-05-04T21:53:59.234+0800)
-XX:+PrintHeapAtGC   每一次GC前和GC后,都打印堆信息
-Xloggc:<file>  表示把GC日志写入到一个文件中去,而不是打印到标准输出中

测试

添加运行时参数

-Xms60m -Xmx60m  -XX:+PrintGCDetails

输出

也可以导出日志文件,上传到http://gceasy.io进行在线分析

-Xms60m -Xmx60m  -XX:+PrintGCDetails -Xloggc:D:\testGC.log

GC分类

  • 部分收集(Partial GC):不是完整收集整个Java堆的垃圾收集。其中又分为:

    • 新生代收集(Minor GC / Young GC):只是新生代(Eden / S0, S1)的垃圾收集
    • 老年代收集(Major GC / Old GC):只是老年代的垃圾收集。目前,只有CMS GC会有单独收集老年代的行为。注意,很多时候Major GC会和Full GC混淆使用,需要具体分辨是老年代回收还是整堆回收。
  • 混合收集(Mixed GC):收集整个新生代以及部分老年代的垃圾收集。目前,只有G1 GC会有这种行为

  • 整堆收集(Full GC):收集整个java堆和方法区的垃圾收集。

日志结构

MinorGC(或young GC或YGC)日志:

[GC (Allocation Failure) [PSYoungGen: 31744K->2192K(36864K)] 31744K->2200K(121856K), 0.0139308 secs] [Times: user=0.05 sys=0.01, real=0.01 secs] 

Full GC日志介绍:

[Full GC (Metadata GC Threshold) [PSYoungGen: 5104K->0K(132096K)] [ParOldGen: 416K->5453K(50176K)] 5520K->5453K(182272K), [Metaspace: 20637K->20637K(1067008K)], 0.0245883 secs] [Times: user=0.06 sys=0.00, real=0.02 secs] 

OOM:堆溢出

模拟堆溢出

@RequestMapping("/add")
public void addObject(){
    System.err.println("add"+peopleSevice);
    ArrayList<People> people = new ArrayList<>();
    while (true){
        people.add(new People());
    }
}

初始参数配置:

-Xms30M -Xmx30M
// 发生oom会导出一个dump文件
-XX:+PrintGCDetails -XX:MetaspaceSize=64m -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=heap/heapdump.hprof   
-XX:+PrintGCDateStamps -Xms200M -Xmx200M -Xloggc:log/gc-oomHeap.log

报错信息

java.lang.OutOfMemoryError: Java heap space

dump文件分析

  • jvisualvm工具分析堆内存文件heapdump.hprof

  • 使用MAT工具查看,能找到对应的线程及相应线程中对应实例的位置和代码:

gc日志分析

将日志文件导入http://gceasy.io 上面讲了

运行时参数如果没设置堆转储,Jmap命令导出一个即可

jmap -dump:format=b,file=<filename.hprof> <pid>

jmap -dump:live,format=b,file=<filename.hprof> <pid>

OOM:元空间溢出

元空间存储数据类型

方法区(Method Area)与 Java 堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、即时编译器编译后的代码等数据。虽然Java 虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做 Non-Heap(非堆),目的应该是与 Java 堆区分开来。

Java 虚拟机规范对方法区的限制非常宽松,除了和 Java 堆一样不需要连续的内存和可以选择固定大小或者可扩展外,还可以选择不实现垃圾收集。垃圾收集行为在这个区域是比较少出现的,其内存回收目标主要是针对常量池的回收和对类型的卸载。当方法区无法满足内存分配需求时,将抛出 OutOfMemoryError 异常。

模拟元空间溢出

@RequestMapping("/metaSpaceOom")
public void metaSpaceOom(){
    ClassLoadingMXBean classLoadingMXBean = ManagementFactory.getClassLoadingMXBean();
    while (true){
        Enhancer enhancer = new Enhancer();
        enhancer.setSuperclass(People.class);
          enhancer.setUseCache(false);
        enhancer.setUseCache(true);
        enhancer.setCallback((MethodInterceptor) (o, method, objects, methodProxy) -> {
            System.out.println("我是加强类,输出print之前的加强方法");
            return methodProxy.invokeSuper(o,objects);
        });
        People people = (People)enhancer.create();
        people.print();
        System.out.println(people.getClass());
        System.out.println("totalClass:" + classLoadingMXBean.getTotalLoadedClassCount());
        System.out.println("activeClass:" + classLoadingMXBean.getLoadedClassCount());
        System.out.println("unloadedClass:" + classLoadingMXBean.getUnloadedClassCount());
    }
}

初始参数

-XX:+PrintGCDetails -XX:MetaspaceSize=60m -XX:MaxMetaspaceSize=60m -Xss512K -XX:+HeapDumpOnOutOfMemoryError 
-XX:HeapDumpPath=heap/heapdumpMeta.hprof  -XX:SurvivorRatio=8 -XX:+TraceClassLoading -XX:+TraceClassUnloading 
-XX:+PrintGCDateStamps  -Xms60M  -Xmx60M -Xloggc:log/gc-oomMeta.log

dump文件分析

JDK8后,元空间替换了永久代,元空间使用的是本地内存

原因及解决方案

原因:

  1. 运行期间生成了大量的代理类,导致方法区被撑爆,无法卸载

  2. 应用长时间运行,没有重启

  3. 元空间内存设置过小

解决方法

因为该 OOM 原因比较简单,解决方法有如下几种:

  1. 检查是否永久代空间或者元空间设置的过小

  2. 检查代码中是否存在大量的反射操作

  3. dump之后通过mat检查是否存在大量由于反射生成的代理类

OOM:GC overhead limit exceeded

模拟代码

public class OOMTest {
    public static void main(String[] args) {
        test1();

//        test2();
    }

    public static void test1() {
        int i = 0;
        List<String> list = new ArrayList<>();
        try {
            while (true) {
                list.add(UUID.randomUUID().toString().intern());
                i++;
            }
        } catch (Throwable e) {
            System.out.println("************i: " + i);
            e.printStackTrace();
            throw e;
        }
    }

    public static void test2() {
        String str = "";
        Integer i = 1;
        try {
            while (true) {
                i++;
                str += UUID.randomUUID();
            }
        } catch (Throwable e) {
            System.out.println("************i: " + i);
            e.printStackTrace();
            throw e;
        }
    }

}

代码解析

第一段代码:运行期间将内容放入常量池的典型案例

intern()方法

  • 如果字符串常量池里面已经包含了等于字符串X的字符串,那么就返回常量池中这个字符串的引用;

  • 如果常量池中不存在,那么就会把当前字符串添加到常量池并返回这个字符串的引用

第二段代码:不停的追加字符串str

为什么第二个没有报GC overhead limit exceeded呢?以上两个demo的区别在于:

  • Java heap space的demo每次都能回收大部分的对象(中间产生的UUID),只不过有一个对象是无法回收的,慢慢长大,直到内存溢出

  • GC overhead limit exceeded的demo由于每个字符串都在被list引用,所以无法回收,很快就用完内存,触发不断回收的机制。

报错信息:

[Full GC (Ergonomics) [PSYoungGen: 2047K->2047K(2560K)] [ParOldGen: 7110K->7095K(7168K)] 9158K->9143K(9728K), [Metaspace: 3177K->3177K(1056768K)], 0.0479640 secs] [Times: user=0.23 sys=0.01, real=0.05 secs] 
java.lang.OutOfMemoryError: GC overhead limit exceeded
[Full GC (Ergonomics) [PSYoungGen: 2047K->2047K(2560K)] [ParOldGen: 7114K->7096K(7168K)] 9162K->9144K(9728K), [Metaspace: 3198K->3198K(1056768K)], 0.0408506 secs] [Times: user=0.22 sys=0.01, real=0.04 secs] 
通过查看GC日志可以发现,系统在频繁性的做FULL GC,但是却没有回收掉多少空间,那么引起的原因可能是因为内存不足,也可能是存在内存泄漏的情况,接下来我们要根据堆DUMP文件来具体分析

dump文件分析

和上面两个相同,可自行分析

解决方案

原因:

这个是JDK6新加的错误类型,一般都是堆太小导致的。Sun 官方对此的定义:超过98%的时间用来做GC并且回收了不到2%的堆内存时会抛出此异常。本质是一个预判性的异常,抛出该异常时系统没有真正的内存溢出

解决方法:

  1. 检查项目中是否有大量的死循环或有使用大内存的代码,优化代码。

  2. 添加参数 -XX:-UseGCOverheadLimit 禁用这个检查,其实这个参数解决不了内存问题,只是把错误的信息延后,最终出现 java.lang.OutOfMemoryError: Java heap space。

  3. dump内存,检查是否存在内存泄漏,如果没有,加大内存。

OOM:线程溢出

模拟代码

public class TestNativeOutOfMemoryError {
    public static void main(String[] args) {
        for (int i = 0; ; i++) {
            System.out.println("i = " + i);
            new Thread(new HoldThread()).start();
        }
    }
}

class HoldThread extends Thread {
    CountDownLatch cdl = new CountDownLatch(1);

    @Override
    public void run() {
        try {
            cdl.await();
        } catch (InterruptedException e) {
        }
    }
}

报错信息

java.lang.OutOfMemoryError : unable to create new native Thread

原因和解决方案

出现这种异常,基本上都是创建了大量的线程导致的

解决一

通过 -Xss 设置每个线程栈大小的容量

  • JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。

  • 正常情况下,在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。

  • 能创建的线程数的具体计算公式如下:

(MaxProcessMemory - JVMMemory - ReservedOsMemory) / (ThreadStackSize) = Number of threads

——————————————————————————————————————

MaxProcessMemory 指的是进程可寻址的最大空间

JVMMemory JVM内存

ReservedOsMemory 保留的操作系统内存

ThreadStackSize 线程栈的大小

——————————————————————————————————————

解决二

  • 在Java语言里, 当你创建一个线程的时候,虚拟机会在JVM内存创建一个Thread对象同时创建一个操作系统线程,而这个系统线程的内存用的不是JVMMemory,而是系统中剩下的内存(MaxProcessMemory - JVMMemory - ReservedOsMemory)。

  • 由公式得出结论:你给JVM内存越多,那么你能创建的线程越少,越容易发生java.lang.OutOfMemoryError: unable to create new native thread

综上,在生产环境下如果需要更多的线程数量,建议使用64位操作系统,如果必须使用32位操作系统,可以通过调整Xss的大小来控制线程数量。

线程总数也受到系统空闲内存和操作系统的限制,检查是否该系统下有此限制:

  • /proc/sys/kernel/pid_max 系统最大pid值,在大型系统里可适当调大

  • /proc/sys/kernel/threads-max 系统允许的最大线程数

  • maxuserprocess(ulimit -u) 系统限制某用户下最多可以运行多少进程或线程

  • /proc/sys/vm/max_map_count

max_map_count文件包含限制一个进程可以拥有的VMA(虚拟内存区域)的数量。虚拟内存区域是一个连续的虚拟地址空间区域。在进程的生命周期中,每当程序尝试在内存中映射文件,链接到共享内存段,或者分配堆空间的时候,这些区域将被创建。调优这个值将限制进程可拥有VMA的数量。限制一个进程拥有VMA的总数可能导致应用程序出错,因为当进程达到了VMA上线但又只能释放少量的内存给其他的内核进程使用时,操作系统会抛出内存不足的错误。如果你的操作系统在NORMAL区域仅占用少量的内存,那么调低这个值可以帮助释放内存给内核用。

性能优化一:合理配置堆内存

增加内存可以提高系统的性能而且效果显著,那么随之带来的一个问题就是,我们增加多少内存比较合适?如果内存过大,那么如果产生FullGC的时候,GC时间会相对比较长,如果内存较小,那么就会频繁的触发GC,在这种情况下,我们该如何合理的适配堆内存大小呢?

分析

依据的原则是根据Java Performance里面的推荐公式来进行设置。

Java整个堆大小设置,Xmx 和 Xms设置为老年代存活对象的3-4倍,即FullGC之后的老年代内存占用的3-4倍。 方法区(永久代 PermSize和MaxPermSize 或 元空间 MetaspaceSize 和 MaxMetaspaceSize)设置为老年代存活对象的1.2-1.5倍。 年轻代Xmn的设置为老年代存活对象的1-1.5倍。 老年代的内存大小设置为老年代存活对象的2-3倍。

但是,上面的说法也不是绝对的,也就是说这给的是一个参考值,根据多种调优之后得出的一个结论,大家可以根据这个值来设置一下我们的初始化内存,在保证程序正常运行的情况下,我们还要去查看GC的回收率,GC停顿耗时,内存里的实际数据来判断,Full GC是基本上不能有的,如果有就要做内存Dump分析,然后再去做一个合理的内存分配。

我们还要注意到一点就是,上面说的老年代存活对象怎么去判定

判定:

JVM参数中添加GC日志,GC日志中会记录每次FullGC之后各代的内存大小,观察老年代GC之后的空间大小。可观察一段时间内(比如2天)的FullGC之后的内存情况,根据多次的FullGC之后的老年代的空间大小数据来预估FullGC之后老年代的存活对象大小(可根据多次FullGC之后的内存大小取平均值)。

总结

在内存相对紧张的情况下,可以按照上述的方式来进行内存的调优, 找到一个在GC频率和GC耗时上都可接受的一个内存设置,可以用较小的内存满足当前的服务需要。

但当内存相对宽裕的时候,可以相对给服务多增加一点内存,可以减少GC的频率,GC的耗时相应会增加一些。 一般要求低延时的可以考虑多设置一点内存, 对延时要求不高的,可以按照上述方式设置较小内存。

如果在垃圾回收日志中观察到OutOfMemoryError,尝试把Java堆的大小扩大到物理内存的80%~90%。尤其需要注意的是堆空间导致的OutOfMemoryError以及一定要增加空间。

  • 比如说,增加-Xms和-Xmx的值来解决old代的OutOfMemoryError

  • 增加-XX:PermSize和-XX:MaxPermSize来解决permanent代引起的OutOfMemoryError(jdk7之前);增加-XX:MetaspaceSize和-XX:MaxMetaspaceSize来解决Metaspace引起的OutOfMemoryError(jdk8之后)

记住一点Java堆能够使用的容量受限于硬件以及是否使用64位的JVM。在扩大了Java堆的大小之后,再检查垃圾回收日志,直到没有OutOfMemoryError为止。如果应用运行在稳定状态下没有OutOfMemoryError就可以进入下一步了,计算活动对象的大小。

性能优化二:JIT优化

可见这篇文章的逃逸分析内容

性能优化三:分析CPU占用超高

如果是生产环境的话,是怎么样才能发现目前程序有问题呢?我们可以推导一下,如果线程死锁,那么线程一直在占用CPU,这样就会导致CPU一直处于一个比较高的占用率。所示我们解决问题的思路应该是:

1.查看所有java进程 ID

jps -l

2.根据进程 ID 检查当前使用异常线程的pid

top -Hp 1456

3.当前占用cpu比较高的线程 ID 是1465

接下来把 线程 PID 转换为16进制为

# 10 进制线程PId 转换为 16 进制
1465   ------->    5b9
# 5b9 在计算机中显示为   
0x5b9

4.最后我们把线程信息打印出来:

jstack 1456 > jstack.log

5.打开jstack.log文件 查找一下刚刚我们转换完的16进制ID是否存在

jstack命令生成的thread dump信息包含了JVM中所有存活的线程,里面确实是存在我们定位到的线程 ID ,在thread dump中每个线程都有一个nid,在nid=0x5b9的线程调用栈中,我们发现两个线程在互相等待对方释放资源

xxx大厂问题排查过程:
...省略;
4、ps aux | grep java  查看到当前java进程使用cpu、内存、磁盘的情况获取使用量异常的进程
5、top -Hp 进程pid  检查当前使用异常线程的pid
6、把线程pid变为16进制如 31695 - 》 7bcf  然后得到0x7bcf
7、jstack 进程的pid | grep -A20  0x7bcf  得到相关进程的代码

标签:Java,JVM,XX,调优,线程,内存,监控,GC,日志
From: https://www.cnblogs.com/dupengpeng/p/17623469.html

相关文章

  • Arthas监控
    Arthas简介:Arthas是一款线上监控诊断产品,通过全局视角实时查看应用load、内存、gc、线程的状态信息。并能在不修改应用代码的情况下,对业务问题进行诊断,包括查看方法调用的出入参、异常,监测方法执行耗时,类加载信息等,大大提升线上问题排查效率。官方文档地址:https://arthas.al......
  • JAVA 内存详解 (理解 JVM 如何使用 Windows 和 Linux 上的本机内存)
    级别:中级AndrewHall ,软件工程师,IBM2009年5月11日Java™堆耗尽并不是造成 java.lang.OutOfMemoryError 的惟一原因。如果本机内存 耗尽,则会发生普通调试技巧无法解决的 OutOfMemoryError 。本文将讨论本机内存的概念,Java运行时如何使用它,它被耗......
  • 【linux】命令iftop实时流量监控
    命令iftop实时流量监控iftop是一个命令行系统监控工具用来显示网络连接。默认按照带宽使用排序连接,并且最大带宽消耗排最上方。iftop在命名的网络接口上监听网络流量并显示按照主机对显示当前流量带宽。如果没有指定接口,iftop将监听在外部接口(使用libcap和libncurses)的第一个接......
  • PostgreSQL autovacuum 5 怎么监控(autovacuum 扫描表工作的百分比)
    PostgreSQL最大的问题就是vacuum,只要PG的实现多版本和UNDO的方式不改变,那么这个话题就会一直继续,到永远。前面四期讲了autovacuum的触发条件,源代码,怎么调整参数,优化,今天最后一章,的说说怎么进行监控,并且评定你的autovacuum的工作是合格的。下面的内容主要是基于几点来围绕的监......
  • RTSP/Onvif视频服务器LntonNVR(源码版)视频监控平台修改录像文件的存储位置的具体操作步
    LntonNVR是基于RTSP/Onvif协议接入的视频平台,具备视频直播监控、录像、检索与回看、存储、国标级联等视频能力,可支持将接入的视频流进行全平台、全终端的分发,包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等。在应用上,LntonNVR可以用在智慧工厂、智慧工地、智慧园区、智慧港口等......
  • 监控keepalived_vip控制容器的状态
    需求:监控server服务器的vip状态,如果vip存在,则判断容器是否启动,如果没有启动,则启动容器。如果vip不存在则关闭容器。方法一:方法一 #!/bin/bashipadd|grepeth0>/data/keepalivedcat/data/keepalived|grep${yunguan_svc_vip.ip}&>/dev/nullif[$?-eq0];then......
  • 汽车之家页面性能监控建设实践
    1前言关注用户体验,提高页面性能,是每位前端研发同学的日常工作之一。提高页面性能对业务的帮助,虽不易衡量,但肯定是利远大于弊。如何衡量页面性能优劣?如何帮助研发同学快速定位到页面性能瓶颈点?一直是前端的重点工作之一。本文分享汽车之家在页面性能监控建设方面的部分工作,主要包......
  • Grafana监控minio的极简方法
    Grafana监控minio的极简方法背景想监控一下minio的部分信息.使用过程中需要关注的内容挺多的.只看简单的node感觉已经不够了.所以想监控易一下.方式和方法minio其实集成了prometheus支持的监控指标只需要在配置文件中放开就可以了.虽然可以使用mc的命令createb......
  • 【升职加薪秘籍】我在服务监控方面的实践(5)-应用监控
    大家好,我是蓝胖子,关于性能分析的视频和文章我也大大小小出了有一二十篇了,算是已经有了一个系列,之前的代码已经上传到github.com/HobbyBear/performance-analyze,接下来这段时间我将在之前内容的基础上,结合自己在公司生产上构建监控系统的经验,详细的展示如何对线上服务进行监控,内......
  • eclipse.ini jvm 配置
    在eclispe的配置文件eclipse.ini中添加使用哪个jvm的配置:-startupplugins/org.eclipse.equinox.launcher_1.3.200.v20160318-1642.jar--launcher.libraryplugins/org.eclipse.equinox.launcher.win32.win32.x86_64_1.1.400.v20160518-1444-productorg.eclipse.epp.package.je......