首页 > 其他分享 >性能优化:如何定位耗时区域

性能优化:如何定位耗时区域

时间:2023-08-06 17:24:15浏览次数:41  
标签:count 定位 12 process 耗时 import 优化 method

对一个系统的量化工作越深入,掌握的关键数字越多,意味着对这个系统的认识也就越深入。


引子

随着系统功能的不断垒积,系统运行会变慢,甚至慢得难以忍受,用户会强烈吐槽,这时候,就需要性能优化了。

要做性能优化,首要的就是先定位耗时区域。耗时区域也成为“热点”。不做热点定位的性能优化都是耍流氓,—— 很可能花费了很大力气,自我感觉良好,实际上收益甚微,而且不知道优化效果如何。

测量与耗时

要定位耗时区域,首先要了解下耗时。我们需要对程序运行的耗时有一个基本的理解。先来看 arthas trace 的一个方法的耗时:

[arthas@7]$ trace com.xxx.yyy.zzz.msg.LoginEventKafkaReceiver onRecord -n 1000
Press Q or Ctrl+C to abort.
Affect(class count: 1 , method count: 1) cost in 497 ms, listenerId: 1
`---ts=2023-07-27 11:35:11;thread_name=tc_ids_login_event_kafka-worker-93;id=c5;is_daemon=false;priority=5;TCCL=org.springframework.boot.loader.LaunchedURLClassLoader@21b8d17c
    `---[36.115748ms] com.xxx.yyy.zzz.msg.LoginEventKafkaReceiver:onRecord()
        +---[0.40% 0.145356ms ] com.xxx.yyy.zzz.util.RequestContextUtils:initRequestContext() #154
        +---[0.05% 0.016523ms ] org.apache.kafka.clients.consumer.ConsumerRecord:value() #156
        +---[1.20% 0.433854ms ] com.xxx.yyy.zzz.util.JsonUtils:readTree() #156
        +---[1.80% 0.651734ms ] com.xxx.yyy.zzz.msg.LoginEventKafkaReceiver:parse() #157
        +---[0.05% 0.016316ms ] org.apache.commons.collections4.CollectionUtils:isEmpty() #159
        +---[0.03% 0.009452ms ] com.xxx.yyy.zzz.lib.event.agent.LoginEventDTO:getAgentId() #163
        +---[0.36% 0.1307ms ] com.xxx.yyy.zzz.helper.info.HostInfoHelper:getHost() #164
        +---[56.30% 20.334184ms ] com.xxx.yyy.zzz.msg.LoginEventKafkaReceiver:saveLoginEvents() #170
        +---[26.53% 9.580277ms ] com.xxx.yyy.zzz.msg.LoginEventKafkaReceiver:sendToBigdataForHandling() #173
        +---[5.55% 2.006107ms ] com.xxx.yyy.zzz.msg.handler.MultiLoginEventHandler:handle() #176
        `---[4.99% 1.802963ms ] com.xxx.yyy.zzz.msg.handler.BeyondRangeLoginEventHandler:handle() #178

从这段耗时我们可以了解到:

  • 大多数“无害”的轻量级方法,耗时大概在 0.1ms 及以下,比如简单的赋值、判断是否非空、简单的 Get 方法及运算;
  • 部分“无害”的方法,耗时在 0.1ms - 1ms 之间,比如 大 JSON 解析、大对象的 Bean copy, 日志打印等, 这些大多时候都可以不理会,除非是要优化到极致做微调的时候。
  • 需要注意的可以优化的方法,往往在 IO、正则以及分布式锁上。比如 mongo, MySQL、Redis 读写、API 调用。这些快的通常在 1-3ms,慢的可能会达到 10-100ms,更慢的可能会到 100ms-1000ms。

性能优化的第一步,就是先找到这些耗时在 10ms 以上的方法。

测量的另一个优点是,你甚至无需实际执行实验,就能“预见”优化效果。比如有个 100ms 的方法,由 40ms 和 60ms 的两个方法组成。 如果你把 60ms 优化到 10ms ,那么优化效果提升多少? 可以算出来的。 原来的 TPS = 10, 优化后的 TPS = 20。性能提升一倍!你可以在测试同学面前自豪地说:性能提升 100%。等他或她执行完实验,发现果真如此,才会更加敬佩你呢!

预见力来自数学。著名的摩尔定律,也是基于晶体管数量每年增长一倍的数学规律来预见的。

工具

工欲善其事,必先利其器。

可以说,做软件这一行,我们少不了各种工具。 IDE(编辑器+编译器+调试器+项目管理+各种插件功能),Git,Postman,MySQL Client, Shell,Xmind, Notebook,JProfiler,放眼望去都是工具。

现有的性能神器之一当属阿里出品的 arthas。arthas trace 对于单个入口方法的追踪很管用,可以在定位某个耗时组件后,进一步持续深入追踪直到某个点,然后优化。可称之为“精确制导”。

不过 arthas trace 无法追踪整个链路的方法耗时。入侵检测流程需要经历告警过滤、告警降噪、恶意行为检测、检测结果预处理、构建告警详情、保存告警前处理、保存告警、保存告警后处理、白名单匹配、发送通知、发送大数据等一系列子流程(组件)。单靠 arthas 来 trace 是比较麻烦的。因为你不知道哪个子流程(组件)是耗时的,得一个个去 trace 。此外,trace 的时候也没法做其它的事情,需要全身心集中在这里。

因此,需要写个工具,测量整个链路的方法耗时,并记录在文件里,待稍后再分析。

链路耗时测量

链路耗时测量工具通常有两种方法实现:

  • 注解 + 切面 + 反射。在方法上加注解,然后通过切面和反射来统计和搜集方法耗时。
  • 通过 agent。涉及字节码。

本文主要谈谈第一种方法的实现。直接上代码。


方法测量注解

package com.xxx.yyy.zzzperf;
 
import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
 
/**
 * 记录方法调用
 */
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
@Documented
public @interface MethodMeasureAnnotation {
 
}

方法耗时统计

package com.xxx.yyy.zzzperf;

import com.xxx.yyy.zzz.util.DateTimeUtils;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.Signature;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.reflect.MethodSignature;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Component;

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.IntSummaryStatistics;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.stream.Collectors;

/**
 * 记录一次请求中,流经的所有方法的调用耗时及次数
 *
 */
@Component
@Aspect
public class MethodMeasureAspect {

    private static final Logger LOG = LoggerFactory.getLogger(MethodMeasureAspect.class);

    private Map<String, Integer> methodCount = new ConcurrentHashMap();

    private Map<String, List<Integer>> methodCost = new ConcurrentHashMap();

    @SuppressWarnings(value = "unchecked")
    @Around("@annotation(com.xxx.yyy.zzzperf.MethodMeasureAnnotation)")
    public Object process(ProceedingJoinPoint joinPoint) {
        Object obj = null;
        String className = joinPoint.getTarget().getClass().getSimpleName();
        String methodName = className + "_" + getMethodName(joinPoint);
        long startTime = System.currentTimeMillis();
        try {
            obj = joinPoint.proceed();
        } catch (Throwable t) {
            LOG.error(t.getMessage(), t);
        } finally {
            long costTime = System.currentTimeMillis() - startTime;
            LOG.info("method={}, cost_time={}", methodName, costTime);
            methodCount.put(methodName, methodCount.getOrDefault(methodName, 0) + 1);
            List<Integer> costList = methodCost.getOrDefault(methodName, new ArrayList<>());
            costList.add((int)costTime);
            methodCost.put(methodName, costList);
        }
        return obj;
    }

    public String getMethodName(ProceedingJoinPoint joinPoint) {
        Signature signature = joinPoint.getSignature();
        MethodSignature methodSignature = (MethodSignature) signature;
        Method method = methodSignature.getMethod();
        return method.getName();
    }

    public String toString() {

        StringBuilder sb = new StringBuilder("MethodCount:\n");
        Map<String,Integer> sorted =  MapUtils.sortByValue(methodCount);
        sorted.forEach(
                (method, count) -> {
                    sb.append("method=" + method + ", " + "count=" + count+'\n');
                }
        );
        sb.append('\n');
        sb.append("MethodCosts:\n");
        methodCost.forEach(
                (method, costList) -> {
                    IntSummaryStatistics stat = costList.stream().collect(Collectors.summarizingInt(x->x));
                    String info = String.format("method=%s, sum=%d, avg=%d, max=%d, min=%d, count=%d", method,
                            (int)stat.getSum(), (int)stat.getAverage(), stat.getMax(), stat.getMin(), (int)stat.getCount());
                    sb.append(info+'\n');
                }
        );

        sb.append('\n');
        sb.append("DetailOfMethodCosts:\n");
        methodCost.forEach(
                (method, costList) -> {
                    String info = String.format("method=%s, cost=%s", method, costList);
                    sb.append(info+'\n');
                }
        );
        return sb.toString();
    }

    public void writeCostsToFile() {
        String datetimestr = DateTimeUtils.formatToString(System.currentTimeMillis(), DateTimeUtils.DATE_TIME_NEW);
        File file = new File(String.format("/tmp/ids_method_costs_%s.txt", datetimestr));
        String costContent = this.toString();
        if (!file.exists()) {
            try {
                file.createNewFile();
            } catch (Exception ex) {
                LOG.error("failed to create file /tmp/ids_method_costs.txt", ex);
                return ;
            }
            BufferedWriter br;
            try {
                br = new BufferedWriter(new FileWriter(file));
            } catch (Exception ex) {
                LOG.error("failed to open /tmp/ids_method_costs.txt", ex);
                return;
            }
            try {
                br.write(costContent);
                br.flush();
            } catch (Exception ex) {
                LOG.error("failed to write file");
                return;
            }
        }
    }

    public int methodCount() {
        int count = methodCount.values().stream()
                .mapToInt(Integer::intValue)
                .sum();
        return count;
    }
}




方法耗时持久化

起一个定时任务,将方法耗时统计写到文件里

package com.xxx.yyy.zzz.zzzperf;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;

/**
 * MonitorThread:
 * created by qin.shu 2023/7/19
 */
@Component
public class MonitorThread {

    private final Logger LOG = LoggerFactory.getLogger(MonitorThread.class);

    private MethodMeasureAspect methodMeasureAspect;

    @Autowired
    public MonitorThread(MethodMeasureAspect methodMeasureAspect) {
        this.methodMeasureAspect = methodMeasureAspect;
    }

    @Scheduled(cron = "0 0/5 * * * ?")
    public void writeCosts() {
        if (methodMeasureAspect.methodCount() >= 100) {
            methodMeasureAspect.writeCostsToFile();
        }
    }

}


注解使用

只要把注解写在方法上即可。

由于 注解切面使用了 Spring AOP 代理,会把相应类加强,改变类名,因此需要做点处理。

package com.xxx.yyy.zzz.core.eventflow.factory;

import com.xxx.yyy.zzz.definitions.BizComponent;
import com.xxx.yyy.zzz.AbstractComponentFactory;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.stereotype.Component;

import javax.annotation.PostConstruct;
import java.util.Map;

/**
 * 业务组件工厂
 */
@Component
public class DefaultComponentFactory extends AbstractComponentFactory implements ApplicationContextAware {

    private final Logger LOG = LoggerFactory.getLogger(this.getClass());

    private ApplicationContext applicationContext;

    private static final String ENHANCER_CLASS = "$$Enhancer";

    @Override
    public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {
        this.applicationContext = applicationContext;
    }

    @PostConstruct
    public void init() {
        initBeans(this::getOriginClassName);
    }

    @Override
    public Map<String, BizComponent> getComponentBeans() {
        Map<String, BizComponent> componentMap = applicationContext.getBeansOfType(BizComponent.class);
        LOG.info("components-keys: {}", componentMap.keySet());
        return componentMap;
    }

    /**
     * 当类被 AOP 代理后,类名会发送变化 (比如 WebshellCdcChecker => WebshellCdcChecker$$EnhancerBySpringCGLIB$$2e63ab2d),
     * 此时加载到组件工厂的类名与 eventflows_detection.yml 不一致,从而找不到对应组件类执行
     * @param className 可能被代理加强的类名
     * @return 原始类名
     */
    private String getOriginClassName(String className) {
        int index = className.indexOf(ENHANCER_CLASS);
        if (index == -1) {
            return className;
        }
        return className.substring(0, index);
    }
}

最终生成的耗时文件如下(这里仅截取一次小的运行):

可以很明显看到哪些方法耗时是值得关注的(通过 avg 可以知道,需要重点优化)、哪些方法的波动比较大(通过 max 与 avg 的对比可以知道,对 TPS 也有影响),需要特别关注。

这样,我们就可以通过 arthas trace 这些方法,进一步找到耗时点。通常是某个数据库操作(没加索引、IO 不太好等因素导致) 或者外部 API 性能不佳。

性能优化的具体方法,我们在下一篇文章再见。

MethodCount:
method=HandleBeforeDetectionSaver_process, count=12
method=HandleAfterDetectionSaver_process, count=12
method=FillDetectionRuleDoBuilder_process, count=12
method=DetectionDuplicateChecker_process, count=12
method=NotifyConsumer_consume, count=12
method=DetectionNotifySender_process, count=12
method=DetectionDoBuilder_process, count=12
method=HandleBeforeWhiteRuleChecker_process, count=12
method=WhiteRulesHitRelationSaver_process, count=12
method=DetectionPreparationHandler_process, count=12

MethodCosts:
method=HandleBeforeDetectionSaver_process, sum=1, avg=0, max=1, min=0, count=12
method=HandleAfterDetectionSaver_process, sum=4134, avg=344, max=1145, min=24, count=12
method=FillDetectionRuleDoBuilder_process, sum=199, avg=16, max=187, min=0, count=12
method=DetectionDuplicateChecker_process, sum=18, avg=1, max=3, min=1, count=12
method=NotifyConsumer_consume, sum=1778, avg=148, max=754, min=54, count=12
method=DetectionNotifySender_process, sum=15, avg=1, max=9, min=0, count=12
method=DetectionDoBuilder_process, sum=427, avg=35, max=138, min=12, count=12
method=HandleBeforeWhiteRuleChecker_process, sum=1, avg=0, max=1, min=0, count=12
method=WhiteRulesHitRelationSaver_process, sum=3, avg=0, max=2, min=0, count=12
method=DetectionPreparationHandler_process, sum=8, avg=0, max=2, min=0, count=12

DetailOfMethodCosts:
method=HandleBeforeDetectionSaver_process, cost=[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
method=HandleAfterDetectionSaver_process, cost=[1066, 1098, 49, 1145, 69, 52, 47, 158, 361, 33, 24, 32]
method=FillDetectionRuleDoBuilder_process, cost=[187, 1, 1, 1, 1, 1, 1, 3, 1, 0, 1, 1]
method=DetectionDuplicateChecker_process, cost=[3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2]
method=NotifyConsumer_consume, cost=[754, 80, 103, 104, 220, 92, 67, 91, 85, 67, 54, 61]
method=DetectionNotifySender_process, cost=[9, 3, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0]
method=DetectionDoBuilder_process, cost=[106, 38, 138, 18, 18, 12, 31, 17, 12, 13, 12, 12]
method=HandleBeforeWhiteRuleChecker_process, cost=[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
method=WhiteRulesHitRelationSaver_process, cost=[2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
method=DetectionPreparationHandler_process, cost=[2, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1]

疑问

反射是否会影响耗时呢?一般来说,反射虽然有性能开销,但相比耗时业务方法来说,是可以忽略不计的。因此,使用反射来统计方法耗时,对最终统计结果是不影响的,基本可以反映业务方法的真实耗时(可能会差个0.x ms)。

小结

本文给出一个测量链路耗时的工具。结合 arthas ,就可以容易地定位到应用层的热点区域,为下一步(应用层)性能优化提供充足的数据参考基础。

对一个系统的量化工作越深入,掌握的关键数字越多,意味着对这个系统的认识也就越深入。

参考资料

标签:count,定位,12,process,耗时,import,优化,method
From: https://www.cnblogs.com/lovesqcc/p/17609593.html

相关文章

  • 聊聊测试开发工程师的职责定位问题
    网上有人会把测开定位成为测试工具开发,主要是开发自动化测试工具或平台,用以帮助手动验收的同学提升效率。存在即合理,确实有一些团队或组织是这样建设的。但作为行业从业者,我们也应该认识到,这样是不全面的,有误导之嫌。现实中的绝大部分测开还是定位在保障业务迭代质量上,因为这......
  • dijkstra + 单调栈优化
    打Div.3发现两个最短路板子题一个用的SPFA一个用的邻接矩阵,赶紧补个。#include<iostream>#include<queue>#defineMAXN20010usingnamespacestd;constintinf=2147483647;intn,m,s,t,cnt;intdis[MAXN],h[MAXN],to[MAXN],val[MAXN],nxt[MAXN];boolvis[MAXN]......
  • 使用缓存优化网站性能:缓解数据库压力,提高访问速度
    使用缓存是一种有效的优化网站性能的方式,特别是对于那些访问集中在少部分数据上的场景,可以显著减轻数据库的压力,提高网站的响应速度和性能。缓存的主要原理是将常用的数据存储在内存中,以避免频繁地从数据库读取数据。由于内存的读写速度远远快于磁盘,通过缓存可以大幅提高数据访问......
  • 【面试经验分享】MySQL数据库面试题:如何定位慢查询?
    面试官:MySQL中,如何定位慢查询?候选人:嗯~,我们当时做压测的时候有的接口非常的慢,接口的响应时间超过了2秒以上,因为我们当时的系统部署了运维的监控系统Skywalking,在展示的报表中可以看到是哪一个接口比较慢,并且可以分析这个接口哪部分比较慢,这里可以看到SQL的具体的执行时间,所以可以......
  • 如何使用 Python 运算符进行性能优化 All In One
    如何使用Python运算符进行性能优化AllInOne为什么Python运算符//比运算符/性能更好,运行速度更快呀❓WhyPythonoperator//isfasterthanoperator/demosclassSolution:defnumberOfSteps(self,num:int)->int:steps:int=0whilenum>......
  • Vue进阶(幺肆贰):CSS-静态定位,相对定位,绝对定位,固定定位的用法和区别详解
    (文章目录)一、前言CSS提供了三种基本的定位机制:普通流、浮动和固定定位;通过这三种方式可实现页面的排版布局。二、普通流普通流中元素的位置由元素在(X)HTML中的位置决定:块级元素独自占一行,在文本流中从上到下一个接一个地排列;行内元素在一行中并排排列,遇到父元素的......
  • .NET 个人博客-首页排版优化-2
    个人博客-首页排版优化-2原本这篇文章早就要出了的,结果之前买的服务器服务商跑路了,导致博客的数据缺失了部分。我是买了一年的服务器,然后用了3个月,国内跑路云太多了,然后也是花钱重新去别的服务商买了一台服务器,这次只买了一个月,先试试水。优化计划置顶3个且可滚动或切换推......
  • 六、查询性能优化
    查询优化、索引优化、库表结构优化需要齐头并进,一个不落6.1为什么查询速度会慢真正重要的是响应时间。如果把查询看作是一个任务,那么它由一系列子任务组成,每个子任务都会消耗一定的时间。如果要优化查询,实际上要优化其子任务,要么消除其中一些子任务,要么减少子任务的执行次数,要......
  • selenium 无法定位元素的一种情形 - iframe
    今天在爬取一个反爬措施较严格的网站时,使用selenium做自动化登录时,无法定位输入框的问题。查看网页源代码确实没有登录相关元素的标签,可以判定是采用的动态加载,但是即使使用的动态加载,等待页面渲染完毕之后应该还是能定位的。看了下渲染完毕之后的网页源码,发现了在当前html......
  • SQL分页优化六 分区表分页
    测试验证如果分页语句中排序的表是分区表,这时我们要看分页语句是否有跨区扫描:如果有跨区扫描,创建索引一般为global索引,如果不创建global索引,就无法保证分页的顺序与索引的顺序一致。如果只扫描一个分区这时可以创建local索引。CREATETABLEP_TEST(OWNERVARCHAR2(30),OB......