import torch
from torch import nn
from d2l import torch as d2l
class Reshape(torch.nn.Module):
def forward(self,x):
# 批量大小默认,输出通道为1
return x.view(-1,1,28,28)
net = torch.nn.Sequential(
# 28+4-5+1=28输出通道为6
Reshape(),nn.Conv2d(1,6,kernel_size=5,padding=2),nn.Sigmoid(),
# 28/2=14通道是6
nn.AvgPool2d(kernel_size=2,stride=2),
# 14-5+1=10输出通道是16
nn.Conv2d(6,16,kernel_size=5),nn.Sigmoid(),
# 10/2=5通道是16
nn.AvgPool2d(kernel_size=2,stride=2),nn.Flatten(),
# 上面是卷积层,下面是两个隐藏层的多层感知机
# 扁平化处理后16*5x5=400,输出通道120
nn.Linear(16*5*5,120),nn.Sigmoid(),
nn.Linear(120,84),nn.Sigmoid(),
nn.Linear(84,10)
)
x = torch.rand(size=(1,1,28,28),dtype=torch.float32)
# Sequential中每一层做迭代
for layer in net:
x = layer(x)
print(layer.__class__.__name__,'output shape: \t',x.shape)
print('**********************************************************')
# LeNet在Fashion-MNIST数据集上的表现
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
def evaluate_accuracy_gpu(net,data_iter,device=None):
"""使用GPU计算模型在数据集上的精度"""
if isinstance(net,torch.nn.Module):
net.eval()
if not device:
# 如果没有指定device则查看第一个parameteres所在的device
device = next(iter(net.parameters())).device
# 定义一个累加器
metric = d2l.Accumulator(2)
for X,y in data_iter:
if isinstance(X,list):
# 如果是一个list则依次挪到device上
X=[x.to(device) for x in X]
else:
X=X.to(device)
# y也挪到设备上
y=y.to(device)
metric.add(d2l.accuracy(net(X),y),y.numel())
# 分类正确的元素个数/整个y大小
return metric[0]/metric[1]
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
"""用GPU训练模型(在第六章定义)"""
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
# 使得方差限定在合适的范围内
nn.init.xavier_uniform_(m.weight)
net.apply(init_weights)
print('training on', device)
net.to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss()
# animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
# legend=['train loss', 'train acc', 'test acc'])
timer, num_batches = d2l.Timer(), len(train_iter)
for epoch in range(num_epochs):
# 训练损失之和,训练准确率之和,样本数
metric = d2l.Accumulator(3)
net.train()
for i, (X, y) in enumerate(train_iter):
timer.start()
optimizer.zero_grad()
X, y = X.to(device), y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
optimizer.step()
with torch.no_grad():
metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
timer.stop()
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
# if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
# animator.add(epoch + (i + 1) / num_batches,
# (train_l, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
# animator.add(epoch + 1, (None, None, test_acc))
print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
f'test acc {test_acc:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
f'on {str(device)}')
if __name__ == '__main__':
lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
标签:nn,卷积,metric,iter,pytorch,train,LeNet,device,net From: https://www.cnblogs.com/jinbb/p/17609405.html