首页 > 其他分享 >使用 Go 语言实现二叉搜索树

使用 Go 语言实现二叉搜索树

时间:2023-08-01 19:44:17浏览次数:49  
标签:node key nil bst 二叉 搜索 func Go 节点

原文链接: 使用 Go 语言实现二叉搜索树

二叉树是一种常见并且非常重要的数据结构,在很多项目中都能看到二叉树的身影。

它有很多变种,比如红黑树,常被用作 std::mapstd::set 的底层实现;B 树和 B+ 树,广泛应用于数据库系统中。

本文要介绍的二叉搜索树用的也很多,比如在开源项目 go-zero 中,就被用来做路由管理。

这篇文章也算是一篇前导文章,介绍一些必备知识,下一篇再来介绍具体在 go-zero 中的应用。

二叉搜索树的特点

最重要的就是它的有序性,在二叉搜索树中,每个节点的值都大于其左子树中的所有节点的值,并且小于其右子树中的所有节点的值。

这意味着通过二叉搜索树可以快速实现对数据的查找和插入。

Go 语言实现

本文主要实现了以下几种方法:

  • Insert(t):插入一个节点
  • Search(t):判断节点是否在树中
  • InOrderTraverse():中序遍历
  • PreOrderTraverse():前序遍历
  • PostOrderTraverse():后序遍历
  • Min():返回最小值
  • Max():返回最大值
  • Remove(t):删除一个节点
  • String():打印一个树形结构

下面分别来介绍,首先定义一个节点:

type Node struct {
    key   int
    value Item
    left  *Node //left
    right *Node //right
}

定义树的结构体,其中包含了锁,是线程安全的:

type ItemBinarySearchTree struct {
    root *Node
    lock sync.RWMutex
}

插入操作:

func (bst *ItemBinarySearchTree) Insert(key int, value Item) {
    bst.lock.Lock()
    defer bst.lock.Unlock()
    n := &Node{key, value, nil, nil}
    if bst.root == nil {
        bst.root = n
    } else {
        insertNode(bst.root, n)
    }
}

// internal function to find the correct place for a node in a tree
func insertNode(node, newNode *Node) {
    if newNode.key < node.key {
        if node.left == nil {
            node.left = newNode
        } else {
            insertNode(node.left, newNode)
        }
    } else {
        if node.right == nil {
            node.right = newNode
        } else {
            insertNode(node.right, newNode)
        }
    }
}

在插入时,需要判断插入节点和当前节点的大小关系,保证搜索树的有序性。

中序遍历:

func (bst *ItemBinarySearchTree) InOrderTraverse(f func(Item)) {
    bst.lock.RLock()
    defer bst.lock.RUnlock()
    inOrderTraverse(bst.root, f)
}

// internal recursive function to traverse in order
func inOrderTraverse(n *Node, f func(Item)) {
    if n != nil {
        inOrderTraverse(n.left, f)
        f(n.value)
        inOrderTraverse(n.right, f)
    }
}

前序遍历:

func (bst *ItemBinarySearchTree) PreOrderTraverse(f func(Item)) {
    bst.lock.Lock()
    defer bst.lock.Unlock()
    preOrderTraverse(bst.root, f)
}

// internal recursive function to traverse pre order
func preOrderTraverse(n *Node, f func(Item)) {
    if n != nil {
        f(n.value)
        preOrderTraverse(n.left, f)
        preOrderTraverse(n.right, f)
    }
}

后序遍历:

func (bst *ItemBinarySearchTree) PostOrderTraverse(f func(Item)) {
    bst.lock.Lock()
    defer bst.lock.Unlock()
    postOrderTraverse(bst.root, f)
}

// internal recursive function to traverse post order
func postOrderTraverse(n *Node, f func(Item)) {
    if n != nil {
        postOrderTraverse(n.left, f)
        postOrderTraverse(n.right, f)
        f(n.value)
    }
}

返回最小值:

func (bst *ItemBinarySearchTree) Min() *Item {
    bst.lock.RLock()
    defer bst.lock.RUnlock()
    n := bst.root
    if n == nil {
        return nil
    }
    for {
        if n.left == nil {
            return &n.value
        }
        n = n.left
    }
}

由于树的有序性,想要得到最小值,一直向左查找就可以了。

返回最大值:

func (bst *ItemBinarySearchTree) Max() *Item {
    bst.lock.RLock()
    defer bst.lock.RUnlock()
    n := bst.root
    if n == nil {
        return nil
    }
    for {
        if n.right == nil {
            return &n.value
        }
        n = n.right
    }
}

查找节点是否存在:

func (bst *ItemBinarySearchTree) Search(key int) bool {
    bst.lock.RLock()
    defer bst.lock.RUnlock()
    return search(bst.root, key)
}

// internal recursive function to search an item in the tree
func search(n *Node, key int) bool {
    if n == nil {
        return false
    }
    if key < n.key {
        return search(n.left, key)
    }
    if key > n.key {
        return search(n.right, key)
    }
    return true
}

删除节点:

func (bst *ItemBinarySearchTree) Remove(key int) {
    bst.lock.Lock()
    defer bst.lock.Unlock()
    remove(bst.root, key)
}

// internal recursive function to remove an item
func remove(node *Node, key int) *Node {
    if node == nil {
        return nil
    }
    if key < node.key {
        node.left = remove(node.left, key)
        return node
    }
    if key > node.key {
        node.right = remove(node.right, key)
        return node
    }
    // key == node.key
    if node.left == nil && node.right == nil {
        node = nil
        return nil
    }
    if node.left == nil {
        node = node.right
        return node
    }
    if node.right == nil {
        node = node.left
        return node
    }
    leftmostrightside := node.right
    for {
        //find smallest value on the right side
        if leftmostrightside != nil && leftmostrightside.left != nil {
            leftmostrightside = leftmostrightside.left
        } else {
            break
        }
    }
    node.key, node.value = leftmostrightside.key, leftmostrightside.value
    node.right = remove(node.right, node.key)
    return node
}

删除操作会复杂一些,分三种情况来考虑:

  1. 如果要删除的节点没有子节点,只需要直接将父节点中,指向要删除的节点指针置为 nil 即可
  2. 如果删除的节点只有一个子节点,只需要更新父节点中,指向要删除节点的指针,让它指向删除节点的子节点即可
  3. 如果删除的节点有两个子节点,我们需要找到这个节点右子树中的最小节点,把它替换到要删除的节点上。然后再删除这个最小节点,因为最小节点肯定没有左子节点,所以可以应用第二种情况删除这个最小节点即可

最后是一个打印树形结构的方法,在实际项目中其实并没有实际作用:

func (bst *ItemBinarySearchTree) String() {
    bst.lock.Lock()
    defer bst.lock.Unlock()
    fmt.Println("------------------------------------------------")
    stringify(bst.root, 0)
    fmt.Println("------------------------------------------------")
}

// internal recursive function to print a tree
func stringify(n *Node, level int) {
    if n != nil {
        format := ""
        for i := 0; i < level; i++ {
            format += "       "
        }
        format += "---[ "
        level++
        stringify(n.left, level)
        fmt.Printf(format+"%d\n", n.key)
        stringify(n.right, level)
    }
}

单元测试

下面是一段测试代码:

func fillTree(bst *ItemBinarySearchTree) {
    bst.Insert(8, "8")
    bst.Insert(4, "4")
    bst.Insert(10, "10")
    bst.Insert(2, "2")
    bst.Insert(6, "6")
    bst.Insert(1, "1")
    bst.Insert(3, "3")
    bst.Insert(5, "5")
    bst.Insert(7, "7")
    bst.Insert(9, "9")
}

func TestInsert(t *testing.T) {
    fillTree(&bst)
    bst.String()

    bst.Insert(11, "11")
    bst.String()
}

// isSameSlice returns true if the 2 slices are identical
func isSameSlice(a, b []string) bool {
    if a == nil && b == nil {
        return true
    }
    if a == nil || b == nil {
        return false
    }
    if len(a) != len(b) {
        return false
    }
    for i := range a {
        if a[i] != b[i] {
            return false
        }
    }
    return true
}

func TestInOrderTraverse(t *testing.T) {
    var result []string
    bst.InOrderTraverse(func(i Item) {
        result = append(result, fmt.Sprintf("%s", i))
    })
    if !isSameSlice(result, []string{"1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"}) {
        t.Errorf("Traversal order incorrect, got %v", result)
    }
}

func TestPreOrderTraverse(t *testing.T) {
    var result []string
    bst.PreOrderTraverse(func(i Item) {
        result = append(result, fmt.Sprintf("%s", i))
    })
    if !isSameSlice(result, []string{"8", "4", "2", "1", "3", "6", "5", "7", "10", "9", "11"}) {
        t.Errorf("Traversal order incorrect, got %v instead of %v", result, []string{"8", "4", "2", "1", "3", "6", "5", "7", "10", "9", "11"})
    }
}

func TestPostOrderTraverse(t *testing.T) {
    var result []string
    bst.PostOrderTraverse(func(i Item) {
        result = append(result, fmt.Sprintf("%s", i))
    })
    if !isSameSlice(result, []string{"1", "3", "2", "5", "7", "6", "4", "9", "11", "10", "8"}) {
        t.Errorf("Traversal order incorrect, got %v instead of %v", result, []string{"1", "3", "2", "5", "7", "6", "4", "9", "11", "10", "8"})
    }
}

func TestMin(t *testing.T) {
    if fmt.Sprintf("%s", *bst.Min()) != "1" {
        t.Errorf("min should be 1")
    }
}

func TestMax(t *testing.T) {
    if fmt.Sprintf("%s", *bst.Max()) != "11" {
        t.Errorf("max should be 11")
    }
}

func TestSearch(t *testing.T) {
    if !bst.Search(1) || !bst.Search(8) || !bst.Search(11) {
        t.Errorf("search not working")
    }
}

func TestRemove(t *testing.T) {
    bst.Remove(1)
    if fmt.Sprintf("%s", *bst.Min()) != "2" {
        t.Errorf("min should be 2")
    }
}

上文中的全部源码都是经过测试的,可以直接运行,并且已经上传到了 GitHub,需要的同学可以自取。

以上就是本文的全部内容,如果觉得还不错的话欢迎点赞转发关注,感谢支持。


源码地址:

推荐阅读:

参考文章:

标签:node,key,nil,bst,二叉,搜索,func,Go,节点
From: https://www.cnblogs.com/alwaysbeta/p/17598874.html

相关文章

  • 数据获取系列,1688按关键词搜索API接口
    onebound.1688.item_search公共参数注册Key和secret测试名称类型必须描述keyString是调用key(必须以GET方式拼接在URL中)secretString是调用密钥api_nameString是API接口名称(包括在请求地址中)[item_search,item_get,item_search_shop等]cacheString否[yes,no]默认yes,将调用缓存的数据......
  • 数据获取系列,按关键词搜索API接口
    onebound.taobao.item_search公共参数名称类型必须描述keyString是调用key(必须以GET方式拼接在URL中)secretString是调用密钥api_nameString是API接口名称(包括在请求地址中)[item_search,item_get,item_search_shop等]cacheString否[yes,no]默认yes,将调用缓存的数据,速度比较快result_......
  • API接口获得1688商品详情,关键词搜索
    onebound.1688.item_getAPI接口入口请求参数请求参数:num_iid=610947572360参数说明:num_iid:1688商品IDsales_data:&sales_data=1获取近30天成交数据agent:&agent=1获取1688分销代发价格数据响应参数Version:Date:名称类型必须示例值描述itemitem[]0宝贝详情数据num_iidString0......
  • 企业信息化,电商商品详情API接口,万邦数据返回值说明,商品详情,关键词搜索,价格监控,卖家买
    都在说API,API到底是什么?对于很多非IT人士而言,API≈听不懂。其实日常生活中,我们有很多类似API的场景,比如:电脑需要调用手机里面的信息,这时候你会拿一根数据线将电脑手机连接起来,电脑和手机上连接数据线的接口就是传说中的API接口。但比喻到底是比喻,并非本质。想要真正理解API,还得老......
  • 万邦1688阿里巴巴中国站按关键字搜索商品 API 返回值说明
    注册Key和secret测试请求参数请求参数:q=女装&start_price=0&end_price=0&page=1&cat=0&discount_only=&sort=&page_size=40&seller_info=no&nick=&seller_info=&nick=&ppath=&imgid=&filter=参数说明:q:搜索关键字cat:分类IDstart_price:开始价......
  • VScode 中golang 单元测试,解决单元测试超时timeout30s
    目的:单元测试的主要目的是验证代码的每个单元(函数、方法)是否按照预期工作。提示:解决单元测试超时30s的问题在序号4 1准备以_test.go结尾文件和导入testing包在命名文件时需要让文件必须以_test结尾,在文件中导入testing包。单元测试源码文件可以由多个测试用例组成,每个测试......
  • 【ArangoDb踩坑】arango视图更新操作注意
    一、问题ping协议的覆盖率字段一直更新有误。二、原因ArangoDBviews中的属性commitIntervalMsec默认为1000毫秒,该属性限制了提交视图数据存储更新后必须要等待指定毫秒数才能查询文档,否则数据就是不可见的。snmp、ping、rping、telemetry四种协议是轮流更新的,其中snmp、ping......
  • mongodb数据如何导入到clickhouse
    一背景说明1开发要求mongodb里的数据需要导入到clickhouse,方便他们分析,因此才有了如下的操作,刚开始找了很多第三方的数据迁移软件,比如tapdata有这个功能,不过用过几次,经常报错,并且也是收费的。因此才决定自己写python脚本解决这个问题。2数据能否顺利导入,发现跟创建ck库里面表......
  • 接口自动化代码不会写?试试RunnerGo
    RunnerGo支持自动化测试功能,RunnerGo的工作流程是:接口管理-场景管理-性能测试-自动化测试,所以自动化测试的运行内容为场景下的用例,我们可以在“场景管理”中预先配置好该场景下的用例,也可以在自动化测试中创建用例。计划管理在左侧导航栏选择:自动化测试-计划管理-新建计划,创建自......
  • 【学习笔记】记忆化搜索
    记忆化搜索目录前置知识:概念:实现:oiwiki:记忆化搜索建议搭配食用。前置知识:深度优先搜索DFS概念:搜索通常通过递归来实现,但是递归过程中往往有很多结果被重复计算,因此降低了搜索的效率。因此记忆化搜索就是再递归的过程中记录已经遍历过的状态与结果,用到的时候再直接取出......