首页 > 其他分享 >目标检测最近

目标检测最近

时间:2023-07-28 22:03:04浏览次数:53  
标签:github abs 检测 arxiv 目标 最近 https org com


本文整理了目标检测(Object Detection)相关,20中最新的深度学习算法,以及算法相关的经典的论文和配套原味代码,分享给大家。

Part 1

综述论文1

论文名称:《 Deep Learning for Generic Object Detection: A Survey 》

论文下载:https://arxiv.org/abs/1809.02165

翻译:《Deep Learning For Generic Object Detection : A Survey》

对应代码:https://github.com/hoya012/deep_learning_object_detection#2014

刷榜排名:http://host.robots.ox.ac.uk:8080/leaderboard/main_bootstrap.php

综述论文2

论文名称:《Object Detection in 20 Years: A Survey》

论文下载:https://arxiv.org/pdf/1905.05055.pdf

继往开来!目标检测二十年技术综述

密歇根大学40页《20年目标检测综述》最新论文,带你全面了解目标检测方法

CVPR2019目标检测方法进展综述CVPR2019 | 斯坦福学者提出GIoU,目标检测任务的新Loss

CVPR 2019 目标检测任务模型介绍(GIoU、Anchor-free、Libra R-CNN)

Part 2

ECCV2018目标检测(object detection)算法总览

CVPR2018 目标检测(object detection)算法总览

深度学习目标检测2013-2018模型总结概览及详解

Part 3

目标检测最新进展总结与展望

CVPR 2019 目标检测任务模型介绍(GIoU、Anchor-free、Libra R-CNN)

FCOS: 最新的one-stage逐像素目标检测算法

【重磅】基于深度学习的目标检测算法综述

Part 4

内容整理自:amusi/awesome-object-detection

作者:amusi

目录

· R-CNN

· Fast R-CNN

· Faster R-CNN

· Light-Head R-CNN

· Cascade R-CNN

· SPP-Net

· YOLO

· YOLOv2

· YOLOv3

· SSD

· DSSD

· FSSD

· ESSD

· Pelee

· R-FCN

· FPN

· RetinaNet

· MegDet

· DetNet

· ZSD

 

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation

· intro: R-CNN

· arxiv: http://arxiv.org/abs/1311.2524

· supp: http://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf

· slides: http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf

· slides: http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf

· github: https://github.com/rbgirshick/rcnn

· notes: http://zhangliliang.com/2014/07/23/paper-note-rcnn/

· caffe-pr("Make R-CNN the Caffe detection example"): https://github.com/BVLC/caffe/pull/482

 

Fast R-CNN

Fast R-CNN

· arxiv: http://arxiv.org/abs/1504.08083

· slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

· github: https://github.com/rbgirshick/fast-rcnn

· github(COCO-branch): https://github.com/rbgirshick/fast-rcnn/tree/coco

· webcam demo: https://github.com/rbgirshick/fast-rcnn/pull/29

· notes: http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/

· notes:

· github("Fast R-CNN in MXNet"): https://github.com/precedenceguo/mx-rcnn

· github: https://github.com/mahyarnajibi/fast-rcnn-torch

· github: https://github.com/apple2373/chainer-simple-fast-rnn

· github: https://github.com/zplizzi/tensorflow-fast-rcnn

 

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

· intro: CVPR 2017

· arxiv: https://arxiv.org/abs/1704.03414

· paper: http://abhinavsh.info/papers/pdfs/adversarial_object_detection.pdf

· github(Caffe): https://github.com/xiaolonw/adversarial-frcnn

 

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

· intro: NIPS 2015

· arxiv: http://arxiv.org/abs/1506.01497

· gitxiv: http://www.gitxiv.com/posts/8pfpcvefDYn2gSgXk/faster-r-cnn-towards-real-time-object-detection-with-region

· slides: http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf

· github(official, Matlab): https://github.com/ShaoqingRen/faster_rcnn

· github(Caffe): https://github.com/rbgirshick/py-faster-rcnn

· github(MXNet): https://github.com/msracver/Deformable-ConvNets/tree/master/faster_rcnn

· github(PyTorch--recommend): https://github.com//jwyang/faster-rcnn.pytorch

· github: https://github.com/mitmul/chainer-faster-rcnn

· github(PyTorch):: https://github.com/andreaskoepf/faster-rcnn.torch

· github(PyTorch):: https://github.com/ruotianluo/Faster-RCNN-Densecap-torch

· github(TensorFlow): https://github.com/smallcorgi/Faster-RCNN_TF

· github(TensorFlow): https://github.com/CharlesShang/TFFRCNN

· github(C++ demo): https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus

· github(Keras): https://github.com/yhenon/keras-frcnn

· github: https://github.com/Eniac-Xie/faster-rcnn-resnet

· github(C++): https://github.com/D-X-Y/caffe-faster-rcnn/tree/dev

 

R-CNN minus R

· intro: BMVC 2015

· arxiv: http://arxiv.org/abs/1506.06981

 

基于MXNet,Faster R-CNN的数据并行化的分布式实现

· github: https://github.com/dmlc/mxnet/tree/master/example/rcnn

Contextual Priming and Feedback for Faster R-CNN

· intro: ECCV 2016. Carnegie Mellon University

· paper: http://abhinavsh.info/context_priming_feedback.pdf

· poster: http://www.eccv2016.org/files/posters/P-1A-20.pdf

 

关于Region Sampling的Faster RCNN实现

· intro: Technical Report, 3 pages. CMU

· arxiv: https://arxiv.org/abs/1702.02138

· github: https://github.com/endernewton/tf-faster-rcnn

 

可解释(Interpretable)R-CNN

· intro: North Carolina State University & Alibaba

· keywords: AND-OR Graph (AOG)

· arxiv: https://arxiv.org/abs/1711.05226

 

Light-Head R-CNN

Light-Head R-CNN: In Defense of Two-Stage Object Detector

· intro: Tsinghua University & Megvii Inc

· arxiv: https://arxiv.org/abs/1711.07264

· github(offical): https://github.com/zengarden/light_head_rcnn

· github: https://github.com/terrychenism/Deformable-ConvNets/blob/master/rfcn/symbols/resnet_v1_101_rfcn_light.py#L784

 

Cascade R-CNN

Cascade R-CNN: Delving into High Quality Object Detection

· arxiv: https://arxiv.org/abs/1712.00726

· github: https://github.com/zhaoweicai/cascade-rcnn

 

SPP-Net

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

· intro: ECCV 2014 / TPAMI 2015

· arxiv: http://arxiv.org/abs/1406.4729

· github: https://github.com/ShaoqingRen/SPP_net

· notes: http://zhangliliang.com/2014/09/13/paper-note-sppnet/

 

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

· intro: PAMI 2016

· intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations

· project page: http://www.ee.cuhk.edu.hk/%CB%9Cwlouyang/projects/imagenetDeepId/index.html

· arxiv: http://arxiv.org/abs/1412.5661

 

Object Detectors Emerge in Deep Scene CNNs

· intro: ICLR 2015

· arxiv: http://arxiv.org/abs/1412.6856

· paper: https://www.robots.ox.ac.uk/~vgg/rg/papers/zhou_iclr15.pdf

· paper: https://people.csail.mit.edu/khosla/papers/iclr2015_zhou.pdf

· slides: http://places.csail.mit.edu/slide_iclr2015.pdf

 

segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

· intro: CVPR 2015

· project(code+data): https://www.cs.toronto.edu/~yukun/segdeepm.html

· arxiv: https://arxiv.org/abs/1502.04275

· github: https://github.com/YknZhu/segDeepM

 

Object Detection Networks on Convolutional Feature Maps

· intro: TPAMI 2015

· keywords: NoC

· arxiv: http://arxiv.org/abs/1504.06066

 

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

· arxiv: http://arxiv.org/abs/1504.03293

· slides: http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf

· github: https://github.com/YutingZhang/fgs-obj

 

DeepBox: Learning Objectness with Convolutional Networks

· keywords: DeepBox

· arxiv: http://arxiv.org/abs/1505.02146

· github: https://github.com/weichengkuo/DeepBox

 

YOLO

You Only Look Once: Unified, Real-Time Object Detection

· arxiv: http://arxiv.org/abs/1506.02640

· code: https://pjreddie.com/darknet/yolov1/

· github: https://github.com/pjreddie/darknet

· blog: https://pjreddie.com/darknet/yolov1/

· slides: https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/pub?start=false&loop=false&delayms=3000&slide=id.p

· reddit: https://www.reddit.com/r/MachineLearning/comments/3a3m0o/realtime_object_detection_with_yolo/

· github: https://github.com/gliese581gg/YOLO_tensorflow

· github: https://github.com/xingwangsfu/caffe-yolo

· github: https://github.com/frankzhangrui/Darknet-Yolo

· github: https://github.com/BriSkyHekun/py-darknet-yolo

· github: https://github.com/tommy-qichang/yolo.torch

· github: https://github.com/frischzenger/yolo-windows

· github: https://github.com/AlexeyAB/yolo-windows

· github: https://github.com/nilboy/tensorflow-yolo

darkflow - translate darknet to tensorflow. 加载轻量级的模型,并基于Tensorflow对权重进行fine-tune,最终输出C++的constant graph。

· blog: https://thtrieu.github.io/notes/yolo-tensorflow-graph-buffer-cpp

· github: https://github.com/thtrieu/darkflow

基于自己的数据Training YOLO

· intro: train with customized data and class numbers/labels. Linux / Windows version for darknet.

· blog: http://guanghan.info/blog/en/my-works/train-yolo/

· github: https://github.com/Guanghan/darknet

YOLO: Core ML versus MPSNNGraph

· intro: Tiny YOLO for iOS implemented using CoreML but also using the new MPS graph API.

· blog: http://machinethink.net/blog/yolo-coreml-versus-mps-graph/

· github: https://github.com/hollance/YOLO-CoreML-MPSNNGraph

TensorFlow YOLO object detection on Android

· intro: Real-time object detection on Android using the YOLO network with TensorFlow

· github: https://github.com/natanielruiz/android-yolo

Computer Vision in iOS – Object Detection

· blog: https://sriraghu.com/2017/07/12/computer-vision-in-ios-object-detection/

· github:https://github.com/r4ghu/iOS-CoreML-Yolo

 

YOLOv2

YOLO9000: 更好,更快,更强

· arxiv: https://arxiv.org/abs/1612.08242

· code: http://pjreddie.com/yolo9000/ https://pjreddie.com/darknet/yolov2/

· github(Chainer): https://github.com/leetenki/YOLOv2

· github(Keras): https://github.com/allanzelener/YAD2K

· github(PyTorch): https://github.com/longcw/yolo2-pytorch

· github(Tensorflow): https://github.com/hizhangp/yolo_tensorflow

· github(Windows): https://github.com/AlexeyAB/darknet

· github: https://github.com/choasUp/caffe-yolo9000

· github: https://github.com/philipperemy/yolo-9000

darknet_scripts

· intro: Auxilary scripts to work with (YOLO) darknet deep learning famework. AKA -> How to generate YOLO anchors?

· github: https://github.com/Jumabek/darknet_scripts

Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2

· github: https://github.com/AlexeyAB/Yolo_mark

LightNet: Bringing pjreddie's DarkNet out of the shadows

https://github.com//explosion/lightnet

YOLO v2 Bounding Box Tool

· intro: Bounding box labeler tool to generate the training data in the format YOLO v2 requires.

· github: https://github.com/Cartucho/yolo-boundingbox-labeler-GUI

Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors

· arxiv: https://arxiv.org/abs/1804.04606

Object detection at 200 Frames Per Second

· intro: faster than Tiny-Yolo-v2

· arXiv: https://arxiv.org/abs/1805.06361

 

YOLOv3

YOLOv3: An Incremental Improvement

· arxiv:https://arxiv.org/abs/1804.02767

· paper:https://pjreddie.com/media/files/papers/YOLOv3.pdf

· code: https://pjreddie.com/darknet/yolo/

· github(Official):https://github.com/pjreddie/darknet

· github:https://github.com/experiencor/keras-yolo3

· github:https://github.com/qqwweee/keras-yolo3

· github:https://github.com/marvis/pytorch-yolo3

· github:https://github.com/ayooshkathuria/pytorch-yolo-v3

· github:https://github.com/ayooshkathuria/YOLO_v3_tutorial_from_scratch

 

SSD

SSD: Single Shot MultiBox Detector

· intro: ECCV 2016 Oral

· arxiv: http://arxiv.org/abs/1512.02325

· paper: http://www.cs.unc.edu/~wliu/papers/ssd.pdf

· slides: http://www.cs.unc.edu/%7Ewliu/papers/ssd_eccv2016_slide.pdf

· github(Official): https://github.com/weiliu89/caffe/tree/ssd

· video: http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973

· github: https://github.com/zhreshold/mxnet-ssd

· github: https://github.com/zhreshold/mxnet-ssd.cpp

· github: https://github.com/rykov8/ssd_keras

· github: https://github.com/balancap/SSD-Tensorflow

· github: https://github.com/amdegroot/ssd.pytorch

· github(Caffe): https://github.com/chuanqi305/MobileNet-SSD

What's the diffience in performance between this new code you pushed and the previous code? #327

https://github.com/weiliu89/caffe/issues/327

 

DSSD

DSSD : Deconvolutional Single Shot Detector

· intro: UNC Chapel Hill & Amazon Inc

· arxiv: https://arxiv.org/abs/1701.06659

· github: https://github.com/chengyangfu/caffe/tree/dssd

· github: https://github.com/MTCloudVision/mxnet-dssd

· demo: http://120.52.72.53/http://www.cs.unc.edu/c3pr90ntc0td/~cyfu/dssd_lalaland.mp4

Enhancement of SSD by concatenating feature maps for object detection

· intro: rainbow SSD (R-SSD)

· arxiv: https://arxiv.org/abs/1705.09587

Context-aware Single-Shot Detector

· keywords: CSSD, DiCSSD, DeCSSD, effective receptive fields (ERFs), theoretical receptive fields (TRFs)

· arxiv: https://arxiv.org/abs/1707.08682

Feature-Fused SSD: Fast Detection for Small Objects

https://arxiv.org/abs/1709.05054

 

FSSD

FSSD: Feature Fusion Single Shot Multibox Detector

https://arxiv.org/abs/1712.00960

Weaving Multi-scale Context for Single Shot Detector

· intro: WeaveNet

· keywords: fuse multi-scale information

· arxiv: https://arxiv.org/abs/1712.03149

 

ESSD

Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network

https://arxiv.org/abs/1801.05918

Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection

https://arxiv.org/abs/1802.06488

 

Pelee

Pelee: A Real-Time Object Detection System on Mobile Devices

https://github.com/Robert-JunWang/Pelee

intro: (ICLR 2018 workshop track)

arxiv: https://arxiv.org/abs/1804.06882

github: https://github.com/Robert-JunWang/Pelee

 

R-FCN

R-FCN: Object Detection via Region-based Fully Convolutional Networks

· arxiv: http://arxiv.org/abs/1605.06409

· github: https://github.com/daijifeng001/R-FCN

· github(MXNet): https://github.com/msracver/Deformable-ConvNets/tree/master/rfcn

· github: https://github.com/Orpine/py-R-FCN

· github: https://github.com/PureDiors/pytorch_RFCN

· github: https://github.com/bharatsingh430/py-R-FCN-multiGPU

· github: https://github.com/xdever/RFCN-tensorflow

R-FCN-3000 at 30fps: Decoupling Detection and Classification

https://arxiv.org/abs/1712.01802

Recycle deep features for better object detection

· arxiv: http://arxiv.org/abs/1607.05066

 

FPN

Feature Pyramid Networks for Object Detection

· intro: Facebook AI Research

· arxiv: https://arxiv.org/abs/1612.03144

Action-Driven Object Detection with Top-Down Visual Attentions

· arxiv: https://arxiv.org/abs/1612.06704

Beyond Skip Connections: Top-Down Modulation for Object Detection

· intro: CMU & UC Berkeley & Google Research

· arxiv: https://arxiv.org/abs/1612.06851

Wide-Residual-Inception Networks for Real-time Object Detection

· intro: Inha University

· arxiv: https://arxiv.org/abs/1702.01243

Attentional Network for Visual Object Detection

· intro: University of Maryland & Mitsubishi Electric Research Laboratories

· arxiv: https://arxiv.org/abs/1702.01478

Learning Chained Deep Features and Classifiers for Cascade in Object Detection

· keykwords: CC-Net

· intro: chained cascade network (CC-Net). 81.1% mAP on PASCAL VOC 2007

· arxiv: https://arxiv.org/abs/1702.07054

DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling

· intro: ICCV 2017 (poster)

· arxiv: https://arxiv.org/abs/1703.10295

Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries

· intro: CVPR 2017

· arxiv: https://arxiv.org/abs/1704.03944

Spatial Memory for Context Reasoning in Object Detection

· arxiv: https://arxiv.org/abs/1704.04224

Accurate Single Stage Detector Using Recurrent Rolling Convolution

· intro: CVPR 2017. SenseTime

· keywords: Recurrent Rolling Convolution (RRC)

· arxiv: https://arxiv.org/abs/1704.05776

· github: https://github.com/xiaohaoChen/rrc_detection

Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

https://arxiv.org/abs/1704.05775

LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems

· intro: Embedded Vision Workshop in CVPR. UC San Diego & Qualcomm Inc

· arxiv: https://arxiv.org/abs/1705.05922

Point Linking Network for Object Detection

· intro: Point Linking Network (PLN)

· arxiv: https://arxiv.org/abs/1706.03646

Perceptual Generative Adversarial Networks for Small Object Detection

https://arxiv.org/abs/1706.05274

Few-shot Object Detection

https://arxiv.org/abs/1706.08249

Yes-Net: An effective Detector Based on Global Information

https://arxiv.org/abs/1706.09180

SMC Faster R-CNN: Toward a scene-specialized multi-object detector

https://arxiv.org/abs/1706.10217

Towards lightweight convolutional neural networks for object detection

https://arxiv.org/abs/1707.01395

RON: Reverse Connection with Objectness Prior Networks for Object Detection

· intro: CVPR 2017

· arxiv: https://arxiv.org/abs/1707.01691

· github: https://github.com/taokong/RON

Mimicking Very Efficient Network for Object Detection

· intro: CVPR 2017. SenseTime & Beihang University

· paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Mimicking_Very_Efficient_CVPR_2017_paper.pdf

Residual Features and Unified Prediction Network for Single Stage Detection

https://arxiv.org/abs/1707.05031

Deformable Part-based Fully Convolutional Network for Object Detection

· intro: BMVC 2017 (oral). Sorbonne Universités & CEDRIC

· arxiv: https://arxiv.org/abs/1707.06175

Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors

· intro: ICCV 2017

· arxiv: https://arxiv.org/abs/1707.06399

Recurrent Scale Approximation for Object Detection in CNN

· intro: ICCV 2017

· keywords: Recurrent Scale Approximation (RSA)

· arxiv: https://arxiv.org/abs/1707.09531

· github: https://github.com/sciencefans/RSA-for-object-detection

 

DSOD

DSOD: Learning Deeply Supervised Object Detectors from Scratch

· intro: ICCV 2017. Fudan University & Tsinghua University & Intel Labs China

· arxiv: https://arxiv.org/abs/1708.01241

· github: https://github.com/szq0214/DSOD

· github:https://github.com/Windaway/DSOD-Tensorflow

· github:https://github.com/chenyuntc/dsod.pytorch

Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids

· arxiv:https://arxiv.org/abs/1712.00886

· github:https://github.com/szq0214/GRP-DSOD

 

RetinaNet

Focal Loss for Dense Object Detection

· intro: ICCV 2017 Best student paper award. Facebook AI Research

· keywords: RetinaNet

· arxiv: https://arxiv.org/abs/1708.02002

CoupleNet: Coupling Global Structure with Local Parts for Object Detection

· intro: ICCV 2017

· arxiv: https://arxiv.org/abs/1708.02863

Incremental Learning of Object Detectors without Catastrophic Forgetting

· intro: ICCV 2017. Inria

· arxiv: https://arxiv.org/abs/1708.06977

Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection

https://arxiv.org/abs/1709.04347

StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection

https://arxiv.org/abs/1709.05788

Dynamic Zoom-in Network for Fast Object Detection in Large Images

https://arxiv.org/abs/1711.05187

Zero-Annotation Object Detection with Web Knowledge Transfer

· intro: NTU, Singapore & Amazon

· keywords: multi-instance multi-label domain adaption learning framework

· arxiv: https://arxiv.org/abs/1711.05954

 

MegDet

MegDet: A Large Mini-Batch Object Detector

· arxiv: https://arxiv.org/abs/1711.07240

 

Single-Shot Refinement Neural Network for Object Detection

· arxiv: https://arxiv.org/abs/1711.06897

· github: https://github.com/sfzhang15/RefineDet

 

Receptive Field Block Net for Accurate and Fast Object Detection

· arxiv: https://arxiv.org/abs/1711.07767

· github: https://github.com//ruinmessi/RFBNet

 

An Analysis of Scale Invariance in Object Detection - SNIP

· arxiv: https://arxiv.org/abs/1711.08189

· github: https://github.com/bharatsingh430/snip

 

Feature Selective Networks for Object Detection

https://arxiv.org/abs/1711.08879

 

Learning a Rotation Invariant Detector with Rotatable Bounding Box

· arxiv: https://arxiv.org/abs/1711.09405

· github: https://github.com/liulei01/DRBox

 

Scalable Object Detection for Stylized Objects

· intro: Microsoft AI & Research Munich

· arxiv: https://arxiv.org/abs/1711.09822

 

Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids

· arxiv: https://arxiv.org/abs/1712.00886

· github: https://github.com/szq0214/GRP-DSOD

 

Deep Regionlets for Object Detection

· keywords: region selection network, gating network

· arxiv: https://arxiv.org/abs/1712.02408

Training and Testing Object Detectors with Virtual Images

· intro: IEEE/CAA Journal of Automatica Sinica

· arxiv: https://arxiv.org/abs/1712.08470

Large-Scale Object Discovery and Detector Adaptation from Unlabeled Video

· keywords: object mining, object tracking, unsupervised object discovery by appearance-based clustering, self-supervised detector adaptation

· arxiv: https://arxiv.org/abs/1712.08832

Spot the Difference by Object Detection

· intro: Tsinghua University & JD Group

· arxiv: https://arxiv.org/abs/1801.01051

Localization-Aware Active Learning for Object Detection

· arxiv: https://arxiv.org/abs/1801.05124

Object Detection with Mask-based Feature Encoding

https://arxiv.org/abs/1802.03934

LSTD: A Low-Shot Transfer Detector for Object Detection

· intro: AAAI 2018

· arxiv: https://arxiv.org/abs/1803.01529

Domain Adaptive Faster R-CNN for Object Detection in the Wild

· intro: CVPR 2018. ETH Zurich & ESAT/PSI

· arxiv: https://arxiv.org/abs/1803.03243

Pseudo Mask Augmented Object Detection

https://arxiv.org/abs/1803.05858

Revisiting RCNN: On Awakening the Classification Power of Faster RCNN

https://arxiv.org/abs/1803.06799

Zero-Shot Detection

· intro: Australian National University

· keywords: YOLO

· arxiv: https://arxiv.org/abs/1803.07113

Learning Region Features for Object Detection

· intro: Peking University & MSRA

· arxiv: https://arxiv.org/abs/1803.07066

Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection

· intro: Singapore Management University & Zhejiang University

· arxiv: https://arxiv.org/abs/1803.08208

Object Detection for Comics using Manga109 Annotations

· intro: University of Tokyo & National Institute of Informatics, Japan

· arxiv: https://arxiv.org/abs/1803.08670

Task-Driven Super Resolution: Object Detection in Low-resolution Images

https://arxiv.org/abs/1803.11316

Transferring Common-Sense Knowledge for Object Detection

https://arxiv.org/abs/1804.01077

Multi-scale Location-aware Kernel Representation for Object Detection

· intro: CVPR 2018

· arxiv: https://arxiv.org/abs/1804.00428

· github: https://github.com/Hwang64/MLKP

Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors

· intro: National University of Defense Technology

· arxiv: https://arxiv.org/abs/1804.04606

Robust Physical Adversarial Attack on Faster R-CNN Object Detector

https://arxiv.org/abs/1804.05810

 

DetNet

DetNet: A Backbone network for Object Detection

arxiv: https://arxiv.org/abs/1804.06215

 

LMNet: Real-time Multiclass Object Detection on CPU using 3D LiDARs

· arxiv: https://arxiv.org/abs/1805.04902

· github: https://github.com/CPFL/Autoware/tree/feature/cnn_lidar_detection

 

ZSD

Zero-Shot Object Detection

· arxiv: https://arxiv.org/abs/1804.04340

 

Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts

· arxiv: https://arxiv.org/abs/1803.06049

 

Zero-Shot Object Detection by Hybrid Region Embedding

· arxiv: https://arxiv.org/abs/1805.06157

 

标签:github,abs,检测,arxiv,目标,最近,https,org,com
From: https://blog.51cto.com/u_12667998/6887649

相关文章

  • m基于PN序列的数据帧检测,帧同步verilog实现,含testbench
    1.算法仿真效果 本系统进行了Vivado2019.2平台的开发,其中Vivado2019.2仿真结果如下:     2.算法涉及理论知识概要         在数据通信系统中,数据帧检测与帧同步是一项重要的任务,用于确定数据传输中数据帧的起始位置和边界,以正确解析数据。基于PN(Pseudo-......
  • 序列检测1011?重复检测&非重复检测
    请设计一个检测序列为1011的检测电路?序列检测一般采用状态机实现。状态机一般采用三段式状态机实现。重复检测即在1011011011中检测三次非重复检测  即在1011011011中检测两次序列检测示意:非重复检测状态转移图 重复检测状态转移图 设计代码和激励代码如下......
  • Unity UGUI的Physics2DRaycaster (2D物理射线检测)组件的介绍及使用
    UnityUGUI的Physics2DRaycaster(2D物理射线检测)组件的介绍及使用一、什么是Physics2DRaycaster组件?Physics2DRaycaster是Unity中的一个UGUI组件,用于在2D场景中进行物理射线检测。它可以检测鼠标或触摸事件在UI元素上的碰撞,并将事件传递给相应的UI元素。二、Physics2DRaycaste......
  • Unity UGUI的PhysicsRaycaster (物理射线检测)组件的介绍及使用
    UnityUGUI的PhysicsRaycaster(物理射线检测)组件的介绍及使用1.什么是PhysicsRaycaster组件?PhysicsRaycaster是UnityUGUI中的一个组件,用于在UI元素上进行物理射线检测。它可以检测鼠标或触摸事件是否发生在UI元素上,并将事件传递给相应的UI元素。2.PhysicsRaycaster的工作......
  • 《产品发展的路标是客户需求导向 企业管理的目标是流程化的组织建设》-- 任正非在PERB
    《产品发展的路标是客户需求导向企业管理的目标是流程化的组织建设》--任正非在PERB产品路标规划评审会议上的讲话2003年5月26日【导读】流程的核心是要反映业务的本质。流程承载业务,业务在流程上跑,沿着流程进行业务管理,由此,组织也必须与业务和流程进行......
  • YOLOv5目标检测模型
    YOLOv5目标检测模型环境配置1、安装Anaconda打开命令行输入conda-V检验是否安装及当前conda的版本2、conda常用的命令1)conda常用的命令condalist2)查看当前存在哪些虚拟环境condaenvlistcondainfor-e3)python创建虚拟环境condacreate-nyour_env_namepython=x......
  • 边沿检测电路?上升&下降&双边沿
    请设计一个边沿检测电路,检测上升、下降、双边沿?moduleedge_detect(inputsys_clk,inputsys_rst_n,inputin,outputpose_edge,outputnege_edge,outputdou_e......
  • 论文解读|Struck算法:基于结构化输出预测的自适应视觉目标跟踪框架
    原创|文BFT机器人01背景本文的背景是关于自适应视觉目标跟踪的研究。在传统的跟踪方法中,通常采用基于检测的方式,即尝试学习一个分类器来区分目标对象和其周围的背景。然而,这种方法存在一些问题,例如需要手动选择特征和参数,容易受到噪声和目标变化的影响。为了解决这些问题,本文提......
  • OpenCV4之特征提取与对象检测
    1、图像特征概述图像特征的定义与表示图像特征表示是该图像唯一的表述,是图像的DNA图像特征提取概述传统图像特征提取-主要基于纹理、角点、颜色分布、梯度、边缘等深度卷积神经网络特征提取-基于监督学习、自动提取特征特征数据/特征属性尺度空间不变性像素迁移不......
  • 成功实现FaceTime拨打,FaceTime数据筛选,检测手机号是否开通FaceTime的原理
    FaceTime是苹果公司iOS和macOS(以前称MacOSX或OSX)内置的一款视频通话软件,通过Wi-Fi或者蜂窝数据接入互联网,在两个装有FaceTime的设备之间实现视频通话。其要求通话双方均具有装有FaceTime的苹果设备,苹果ID以及可接入互联网的3G/4G/5G或者Wi-Fi网络。 一、Windows电脑上部署苹......