5模型机整体的联调【FPGA模型机课程设计】
- 前言
- 推荐
- 5模型机整体的联调
- 安排
- MIPS 基本整数指令集
- MIPS 扩展整数指令集
- 测试与结果
- 1FPGA模型计算机整体方案设计
- 掌握MIPS指令集的相关设计
- 2模型计算机各功能电路设计
- 初始化数据
- I型指令测试
- R型指令测试
- J型指令测试
- 访存指令测试
- 3模型机指令系统设计-1
- 测试slt
- 3模型机指令系统设计-2
- 测试乘除
- 3模型机指令系统设计-3
- 测试剩余4条指令
- 4实现中断异常相关指令-1
- 测试原子指令
- 4实现中断异常相关指令-2
- 测试syscall
- 测试定时中断
- 附录
- 0 框架
- 1 define 编码
- 2 IF 取值
- 3 ID 译码
- 4 EX 执行
- 5 MEM 访存
- 6 DataMem 数据存储器
- 7 RegFile 存取
- A HiLo 高位低位寄存器
- B LLbit LLbit寄存器
- C CP0 协处理器
- D Ctrl 控制模块
- 8 MIPS 封装
- 9 InstMem 指令存储器
- 10 SOC 顶层
- 11 soc_tb
- 最后
前言
2023-5-25 08:15:05
以下内容源自《【FPGA模型机课程设计】》
仅供学习交流使用
推荐
0集中实践环节计划书【FPGA模型机课程设计】
5模型机整体的联调
安排
第一周周五:
模型机整体的联调。完成模型机指令系统实现。学生根据设计好的指令系统实现方案,在Modelsim上进行功能仿真。要求将所有设计的机器指令都仿真正确,包括:数据流通、时序节拍、寄存器的读写,输入输出端口的访问、接口控制信号等。所有指令功能测试正确。指导教师对学生进行中期检查,主要观察指令运行结果,包括数据寄存器打入是否正确,转移指令是否正确设置PC,中断异常等指令功能的实现,即能够编写具体测试指令,能够通过简单的中断异常机器指令对中断异常等功能进行测试。
MIPS 基本整数指令集
MIPS 扩展整数指令集
测试与结果
1FPGA模型计算机整体方案设计
掌握MIPS指令集的相关设计
参见:计算机组成原理
实验内容,其实在计算机组成原理的课程设计做过
有兴趣的同学,可以支持博主,订阅一下计算机组成原理 不订阅也是可以的,实验过程中的代码会写在每篇博客的附录
2模型计算机各功能电路设计
初始化数据
//初始化数据
//ori R0,1100 -- R1 --00001100
instmem [0] = 32'h34011100;
//ori R0,0020 -- R2 --00000020
instmem [1] = 32'h34020020;
//ori R0,ff00 -- R3 --0000ff00
instmem [2] = 32'h3403ff00;
//ori R0,ffff -- R4 --0000ffff
instmem [3] = 32'h3404ffff;
I型指令测试
//I型指令测试
//andi R0,ffff --R5 --00000000
instmem [4] = 32'h3005ffff;
//xori R0,ffff --R6 --0000ffff
instmem [5] = 32'h3806ffff;
//addi R0,ffff --R7 --ffffffff
instmem [6] = 32'h2007ffff;
// //subi R0,ffff --R8 --00000001
// instmem [7] = 32'h2408ffff;
//lui R0,ffff --R9 --ffff0000
instmem [8] = 32'h3C09ffff;
R型指令测试
//R型指令测试
instmem [6] = 32'b000000_00001_00010_00111_00000_100010;//sub,R7,R1,R2 000010e0
instmem [7] = 32'b000000_00001_00010_01000_00000_100100;//and,R8,R1,R2 00000000
instmem [8] = 32'b000000_00001_00010_01001_00000_100110;//xor,R9,R1,R2 00001120
//lui R0,ffff --R10 --ffff0000
instmem [9] = 32'h3C0Affff;
//R11=fffe0000 R12=7fff8000 R13=ffff8000
// Ra=sa={25'b0,imm[10:6]}
instmem [10] = 32'b000000_00000_01010_01011_00001_000000;//sll,R11,Ra,R10
instmem [11] = 32'b000000_00000_01010_01100_00001_000010;//srl,R12,Ra,R10
instmem [12] = 32'b000000_00000_01010_01101_00001_000011;//sra,R13,Ra,R10
J型指令测试
//J- JR型指令测试
/*
//pc=jaddr=npc(4) offset(26) 00(2)
//instmem [6] = 32'h08000001; //j 1 编码000010 pc=0004
instmem [6] = 32'h0C000002; //jal 2 编码000011 pc=0008 r31=npc001c
*/
instmem [6] = 32'h08000001; //j 1 编码000010 pc=0004
instmem [6] = 32'h0C000002; //jal 2 编码000011 pc=0008 r31=npc001c
//pc=jaddr=(rs)
instmem [6] = 32'h3407000C;//ori,R7,000C
//instmem [7] = 32'b000000_00111_00000_00000_00000_001000; //jr R7 编码001000 pc=0000000C
instmem [7] = 32'b000000_00111_00000_00000_00000_001001; //jalr R7 编码001001 pc=0000000C R31=00000020
instmem [7] = 32'b000000_00111_00000_00000_00000_001000; //jr R7 编码001000 pc=0000000C
instmem [7] = 32'b000000_00111_00000_00000_00000_001001; //jalr R7 编码001001 pc=0000000C R31=00000020
//J+型指令测试
//pc=jaddr=npc+S14 offset(16) 00(2)
//R1=00001100 R2=00000020 R3=000000ff R4=0000ffff R5=00001120 R6=00001120
//instmem [6] = 32'b000100_00101_00110_0000_0000_0000_0000; //beq r5,r6,0 编码000100 pc=001C
//instmem [6] = 32'b000100_00101_00110_0000_0000_0000_0001; //beq r5,r6,1 编码000100 pc=0020
//instmem [6] = 32'b000101_00001_00110_1111_1111_1111_1110; //bne r5,r6,-2 编码000101 pc=0014
//instmem [6] = 32'b000001_00010_00000_0000_0000_0000_0001; //bltz r2,r0,1 编码000001 pc=0020
instmem [6] = 32'b000111_00001_00000_1111_1111_1111_1110; //bgtz r1,r0,-2 编码010011 pc=0014
//ori R7,0001 -- R7 --00000001
instmem [7] = 32'h34070001; //ori R7 1
//ori R8,0001 -- R8 --00000001
instmem [8] = 32'h34080001; //ori R8 1
instmem [6] = 32'b000100_00101_00110_0000_0000_0000_0000; //beq r5,r6,0 编码000100 pc=001C
跳转到相对于npc的0位置
instmem [6] = 32'b000100_00101_00110_0000_0000_0000_0001; //beq r5,r6,1 编码000100 pc=0020
跳转到相对于npc的+1位置
instmem [6] = 32'b000101_00001_00110_1111_1111_1111_1110; //bne r5,r6,-2 编码000101 pc=0014
跳转到相对于npc的-2位置
instmem [6] = 32'b000001_00010_00000_0000_0000_0000_0001; //bltz r2,r0,1 编码000001 pc=0020
跳转到相对于npc的+1位置
instmem [6] = 32'b000111_00001_00000_1111_1111_1111_1110; //bgtz r1,r0,-2 编码010011 pc=0014
跳转到相对于npc的-2位置
访存指令测试
//(r1)=0000 1100
// +0000 0018
//addr=0000 1118
// =1000100011000 字节地址
// =100 0100 0110 字地址
// =446H 只有1K空间
// =46H 丢掉了高位的1位
// =70
//mem[70]=(r6)
instmem[6]=32'b101011_00001_00110_0000_0000_0001_1000; //sw r6,0x18(r1)
//(r7)=mem[70]
instmem[7]=32'b100011_00001_00111_0000_0000_0001_1000; //lw r7,0x18(r1)
3模型机指令系统设计-1
测试slt
//测试12条MIPS指令
//测试slt
//R1=00001100 R2=00000020
instmem [6] = 32'b000000_00001_00010_00111_00000_101010;//slt,R7,R1,R2 00000000
//lui R0,ffff --R8 --ffff0000
instmem [7] = 32'h3C08ffff;
//ori R8,ffff --R8 --ffffffff
instmem [8] = 32'b001101_01000_01000_1111_1111_1111_1111;
//lui R0,ffff --R9 --ffff0000
instmem [9] = 32'h3C09ffff;
//ori R9,ffff --R9 --fffffffe
instmem [10] = 32'b001101_01001_01001_1111_1111_1111_1110;
//R8=ffffffff(-1) R9=fffffffe(-2)
instmem [11] = 32'b000000_01001_01000_01010_00000_101010;//slt,R10,R9,R8 00000001
3模型机指令系统设计-2
测试乘除
//测试乘除
//R1=00001100 R2=00000020
//multu,R1,R2 0_22000
instmem [6] = 32'b000000_00001_00010_00111_00000_011001;//multu,R1,R2
//ori R7,ffff -- R7 --0000ffff
instmem [7] = 32'h3407ffff; //ori R7 ffff
//sll R7,R7,10h -- R7 --ffff0000
instmem [8] = 32'b000000_00000_00111_00111_10000_000000;//sll R7,R7,10h
//mult R7,R2 ffffffff_ffe00000
instmem [9] = 32'b000000_00111_00010_00000_00000_011000;//mult R7,R2
//divu r1,r2 88_0
instmem [10] = 32'b000000_00001_00010_00000_00000_011011;//divu r1,r2
//div r3,r2 fffff800_0
instmem [11] = 32'b000000_00111_00010_00000_00000_011010;//div r7,r2
3模型机指令系统设计-3
测试剩余4条指令
//测试剩余4条指令
//R1=00001100 R2=00000020
//mthi,R1--hi=00001100
instmem [6] = 32'b000000_00001_00000_00000_00000_010001;//mthi,R1
//mtlo,R2--lo=00000020
instmem [6] = 32'b000000_00010_00000_00000_00000_010011;//mtlo,R2
//mfhi,R7--R7=00001100
instmem [6] = 32'b000000_00000_00000_00111_00000_010001;//mfhi,R7
//mflo,R8--R8=00000020
instmem [6] = 32'b000000_00000_00000_01000_00000_010011;//mflo,R8
4实现中断异常相关指令-1
测试原子指令
//测试原子指令
//计算地址说明
//(r1)=0000 1100
// +0000 0020
//addr=0000 1120
// =1000100100000 字节地址
// =100 0100 1000 字地址
// =448H 只有1K空间
// =48H 丢掉了高位的1位
// =72
//mem[72]<-->(r7)
//测试功能
//R1=00001100 R2=00000020
//Lpt: LL r7,0x20(r1) //读取程序里的信号量,LLibt=1
//ll r7,0x20(r2) --(r7)=mem[72]=0
instmem [6] = 32'b110000_00001_00111_0000_0000_0010_0000;//ll r7,0x20(r1)
//if(r7 == clearFlag) //判断信号是否被占用,为clearFlag表示没占用
//pc=jaddr=npc+S14 offset(16) 00(2)
//bne,r7,r0,else(+4)
instmem [7] = 32'b000101_00111_00000_0000_0000_0000_0100;//bne,r7,r0,else(+4)
//{
// MOV r7, setFlag //设置本程序的占用标志
//ori R7,ffff -- R7 --0000ffff
instmem [8] = 32'h3407ffff; //ori R7 ffff
// SC r7, 0x20(r1) //设置到信号量里
instmem [9] = 32'b111000_00001_00111_0000_0000_0010_0000;//sc r7,0x20(r1)
// if(r7 == 1) goto Success//如果信号量设置成功,r1就会为1
//pc=jaddr=npc+S14 offset(16) 00(2)
//bne,r1,r0,Success(+2)
instmem [10] = 32'b000101_00111_00000_0000_0000_0000_0010;//bne,r7,r0,Success(+2)
// //如果信号量没有设置成功,重新读信号量,即重新执行LL指令
// else goto Lpt
//j Lpt(6)
//pc=jaddr=npc(4) offset(26) 00(2)
instmem [11] = 32'h08000006;//j Lpt(6) 编码000010 pc=0018
//}
//else goto Lpt
//j Lpt(6)
//pc=jaddr=npc(4) offset(26) 00(2)
instmem [12] = 32'h08000006;//j Lpt(6) 编码000010 pc=0018
//Success:
// 访问指定的存储区域
// set r7,clearFlag
//andi R7,0000 -- R7 --00000000
instmem [13] = 32'h30070000; //andi R7,0000
// lw r7,(0x20)r1
instmem[14]=32'b100011_00001_00111_0000_0000_0010_0000; //lw r7,0x20(r1)
4实现中断异常相关指令-2
测试syscall
//测试中断指令
//测试syscall
instmem[6]=32'h0000000c;//syscall instruction
instmem[7]=32'h3407ffff;//ori
instmem[8]=32'h3408ffff;//ori
instmem [16]=32'h340affff;//syscall except program
instmem [17]=32'h340bffff;//ori
instmem [18]=32'h42000018;//eret inatruction
测试定时中断
//测试定时中断
instmem[0] =32'h34020000; //ori $2, $0,0
instmem[1]= 32'h34010014; //ori $1, $0,20
instmem[2]= 32'h40815800; //mtc0 $1,$11 set compare=20
instmem[3]=32'h3c011000; //lui $1, 0x1000
instmem[4]=32'h34210401; //ori $1, $1,0x0401
instmem[5]= 32'h40816000; //mtc0 $1,$12 set status,enable int
instmem[6]= 32'h08000006; //lpt: j lpt
//interproc first addr Ox0050
instmem[20]= 32'h34030001; //ORI $3,$0,1
instmem[21]= 32'h34040014; //ORI S4, $0,20
instmem[22]= 32'h00431020; //ADD $2,$2,$3
instmem[23]= 32'h40015800; //MFC $1,$11 read compare
instmem[24]=32'h00240820; //ADD $1,$1,$4
instmem[25]= 32'h40815800; //MTC0 s1,$11 set compare
instmem[26]= 32'h42000018; //eret
0-6
等待count== compare
然后执行中断程序
执行完成异常返回
继续等待count== compare
附录
其余与上篇一样
0 框架
顶层设计
代码框架
1 define 编码
//0、宏定义文件
`define RstEnable 1'b1
`define RstDisable 1'b0
`define RomEnable 1'b1
`define RomDisable 1'b0
`define Zero 0
`define Valid 1'b1
`define Invalid 1'b0
`define SetFlag 1'b1 //检查LLbit的值,控制信号,不是数据信号
`define ClearFlag 1'b0 //检查LLbit的值,控制信号,不是数据信号
//MEM宏编译
`define RamWrite 1'b1
`define RamUnWrite 1'b0
`define RamEnable 1'b1
`define RamDisable 1'b0
//中断编码
`define CP0_epc 32'b0
`define IntrOccur 1'b1
`define IntrNotOccur 1'b0
//cp0中各寄存器地址
`define CP0_count 5'd9
`define CP0_compare 5'd11
`define CP0_status 5'd12
`define CP0_epc 5'd14
`define CP0_cause 5'd13
//指令外部编码
//MIPS 基本整数指令集
//表1 20条MIPS整数指令
//R型编码
`define Inst_reg 6'b000000
`define Inst_add 6'b100000
`define Inst_sub 6'b100010
`define Inst_and 6'b100100
`define Inst_or 6'b100101
`define Inst_xor 6'b100110
`define Inst_sll 6'b000000
`define Inst_srl 6'b000010
`define Inst_sra 6'b000011
`define Inst_jr 6'b001000
//I型编码
`define Inst_addi 6'b001000
`define Inst_andi 6'b001100
`define Inst_ori 6'b001101
`define Inst_xori 6'b001110
`define Inst_lw 6'b100011
`define Inst_sw 6'b101011
`define Inst_beq 6'b000100
`define Inst_bne 6'b000101
`define Inst_lui 6'b001111
//J型编码
`define Inst_j 6'b000010
`define Inst_jal 6'b000011
//MIPS 扩展整数指令集
//表2 MIPS 12条整数指令
`define Inst_slt 6'b101010
`define Inst_bgtz 6'b000111 //j i
`define Inst_bltz 6'b000001 //j i
`define Inst_jalr 6'b001001 //r
`define Inst_mult 6'b011000 //r
`define Inst_multu 6'b011001 //r
`define Inst_div 6'b011010 //r
`define Inst_divu 6'b011011 //r
`define Inst_mfhi 6'b010000 //r
`define Inst_mflo 6'b010010 //r
`define Inst_mthi 6'b010001 //r
`define Inst_mtlo 6'b010011 //r
//表3 MIPS与中断异常相关6条指令
`define Inst_ll 6'b110000 //i
`define Inst_sc 6'b111000 //i
`define Inst_syscall 32'b000000_00000_000000000000000_001100//全译码
`define Inst_eret 32'b010000_10000_000000000000000_011000//全译码
`define Inst_cp0 6'b010000
`define Inst_mfc0 5'b00000 //010000扩展编码
`define Inst_mtc0 5'b00100 //010000扩展编码
//另外
//`define Inst_subi 6'b001001 //i
//内部供EX的编码
`define Nop 6'b000000
`define Or 6'b000001
`define And 6'b000010
`define Xor 6'b000011
`define Add 6'b000100
`define Sub 6'b000101
`define Lui 6'b100000
`define Sll 6'b000110
`define Srl 6'b000111
`define Sra 6'b001000
`define J 6'b001001
`define Jal 6'b001010
`define Jr 6'b001011
`define Beq 6'b001100
`define Bne 6'b001101
`define Bgtz 6'b001110
`define Bltz 6'b001111
`define Lw 6'b010000
`define Sw 6'b010001
`define Slt 6'b010010
`define Mult 6'b010011
`define Multu 6'b010100
`define Div 6'b010101
`define Divu 6'b010110
`define Mfhi 6'b010111
`define Mflo 6'b011000
`define Mthi 6'b011001
`define Mtlo 6'b011010
`define Ll 6'b011011
`define Sc 6'b011100
`define Syscall 6'b011101
`define Eret 6'b011110
`define Mfc0 6'b011111
`define Mtc0 6'b100001
2 IF 取值
`include "define.v";
//IF 取指模块
//1、控制PC,程序计数器
module IF(
input wire clk,
input wire rst,
input wire [31:0] jAddr,//J型
input wire jCe,//J型
output reg ce,
output reg [31:0] pc,
input wire[31:0] ejpc, //异常或中断转移地址
input wire excpt //异常或中断有效信号
);
always@(*)
if(rst == `RstEnable)
ce = `RomDisable;
else
ce = `RomEnable;
//程序执行 pc+=4
//中断-修改
always@(posedge clk)
if(ce == `RomDisable)
pc = `Zero;
else if(excpt == 1'b1)
pc <=ejpc;//异常或中断的转移地址更新pc
else if(jCe == `Valid)//J型
pc = jAddr;
else
pc = pc + 4;
endmodule
3 ID 译码
`include "define.v";
//ID 译码模块
//2、为操作数做准备
module ID (
input wire rst,
// input wire [31:0] pc, //J型
input wire [31:0] inst,
input wire [31:0] regaData_i,
input wire [31:0] regbData_i,
output reg [5:0] op,
output reg [31:0] regaData,
output reg [31:0] regbData,
output reg regaRead,
output reg regbRead,
output reg regcWrite,
output reg [4:0] regaAddr,
output reg [4:0] regbAddr,
output reg [4:0] regcAddr,
output reg [31:0] jAddr, //J型
output reg jCe,//J型
input wire [31:0] pc_i,//将原来输入pc变为pc_i
output wire[31:0] pc,//新增输出pc
output wire[31:0] excptype//异常信息记录
);
//操作指令
wire [5:0] inst_op = inst[31:26];
//扩展的立即数
reg [31:0] imm;
//用于R型指令
wire[5:0] func = inst[5:0];
//用于J型指令
wire [31:0] npc = pc + 4;
//中断
reg is_syscall;
reg is_eret;
assign pc = pc_i;
assign excptype= {22'b0, is_eret, is_syscall,8'b0};
always@(*)
if(rst == `RstEnable)
begin
op = `Nop;
regaRead = `Invalid;
regbRead = `Invalid;
regcWrite = `Invalid;
regaAddr = `Zero;
regbAddr = `Zero;
regcAddr = `Zero;
imm = `Zero;
jCe = `Invalid;//J型
jAddr = `Zero;//J型
is_eret = `Invalid;//中断
is_syscall = `Invalid;//中断
end
else if(inst == `Inst_eret)
begin
op =`Eret;
regaRead = `Invalid;
regbRead = `Invalid;
regcWrite= `Invalid;
regaAddr = `Zero;
regbAddr = `Zero;
regcAddr = `Zero;
imm= `Zero;
jCe=`Invalid;
jAddr=`Zero;
is_eret = `Valid;
is_syscall = `Invalid;
end
else if(inst == `Inst_syscall)
begin
op = `Syscall;
regaRead = `Invalid;
regbRead= `Invalid;
regcWrite = `Invalid;
regaAddr = `Zero;
regbAddr = `Zero;
regcAddr = `Zero;
imm= `Zero;
jCe=`Invalid;
jAddr=`Zero;
is_eret = `Invalid;
is_syscall = `Valid;
end
else
begin//后面的end
jCe = `Invalid;//J型
jAddr = `Zero;//J型
is_eret = `Invalid;//中断
is_syscall = `Invalid;//中断
case(inst_op)
`Inst_cp0:
case(inst[25:21])
`Inst_mfc0:
begin
op = `Mfc0;
regaRead = `Invalid;
regbRead = `Invalid;
regcWrite = `Valid;
regaAddr = `Zero;
regbAddr = `Zero;
regcAddr = inst[20:16];
imm= {27'h0, inst[15:11]};
end
`Inst_mtc0:
begin
op =`Mtc0;
regaRead = `Invalid;
regbRead = `Valid;
regcWrite = `Invalid;
regaAddr = `Zero;
regbAddr = inst[20:16];
regcAddr = `Zero;
imm= {27'h0, inst[15:11]};
end
default:
begin
op= `Nop;
regaRead = `Invalid;
regbRead = `Invalid;
regcWrite = `Invalid;
regaAddr = `Zero;
regbAddr = `Zero;
regcAddr = `Zero;
imm= `Zero;
end
endcase
`Inst_ori:
begin
op = `Or;
regaRead = `Valid;
regbRead = `Invalid;
regcWrite = `Valid;
regaAddr = inst[25:21];
regbAddr = `Zero;
regcAddr = inst[20:16];
imm = {16'h0, inst[15:0]};
end
`Inst_andi:
begin
op = `And;
regaRead = `Valid;
regbRead = `Invalid;
regcWrite = `Valid;
regaAddr = inst[25:21];
regbAddr = `Zero;
regcAddr = inst[20:16];
imm = {16'h0, inst[15:0]};
end
`Inst_xori:
begin
op = `Xor;
regaRead = `Valid;
regbRead = `Invalid;
regcWrite = `Valid;
regaAddr = inst[25:21];
regbAddr = `Zero;
regcAddr = inst[20:16];
imm = {16'h0, inst[15:0]};
end
`Inst_addi:
begin
op = `Add;
regaRead = `Valid;
regbRead = `Invalid;
regcWrite = `Valid;
regaAddr = inst[25:21];
regbAddr = `Zero;
regcAddr = inst[20:16];
imm = {{16{inst[15]}}, inst[15:0]};
end
// `Inst_subi:
// begin
// op = `Sub;
// regaRead = `Valid;
// regbRead = `Invalid;
// regcWrite = `Valid;
// regaAddr = inst[25:21];
// regbAddr = `Zero;
// regcAddr = inst[20:16];
// imm = {{16{inst[15]}}, inst[15:0]};
// end
`Inst_lui:
begin
op = `Lui;
regaRead = `Valid;
regbRead = `Invalid;
regcWrite = `Valid;
regaAddr = inst[25:21];
regbAddr = `Zero;
regcAddr = inst[20:16];
imm = {inst[15:0],16'h0};
end
`Inst_reg:
case(func)
`Inst_add:
begin
op = `Add;
regaRead = `Valid;
regbRead = `Valid;
regcWrite = `Valid;
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = inst[15:11];
imm = `Zero;
end
`Inst_or:
begin
op = `Or;
regaRead = `Valid;
regbRead = `Valid;
regcWrite = `Valid;
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = inst[15:11];
imm = `Zero;
end
`Inst_sub:
begin
op = `Sub;
regaRead = `Valid;
regbRead = `Valid;
regcWrite = `Valid;
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = inst[15:11];
imm = `Zero;
end
`Inst_and:
begin
op = `And;
regaRead = `Valid;
regbRead = `Valid;
regcWrite = `Valid;
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = inst[15:11];
imm = `Zero;
end
`Inst_xor:
begin
op = `Xor;
regaRead = `Valid;
regbRead = `Valid;
regcWrite = `Valid;
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = inst[15:11];
imm = `Zero;
end
`Inst_sll:
begin
op = `Sll;
regaRead = `Invalid;
regbRead = `Valid;
regcWrite = `Valid;
regaAddr = `Zero;
regbAddr = inst[20:16];
regcAddr = inst[15:11];
imm = {27'b0,inst[10:6]};//移位复用imm
end
`Inst_srl:
begin
op = `Srl;
regaRead = `Invalid;
regbRead = `Valid;
regcWrite = `Valid;
regaAddr = `Zero;
regbAddr = inst[20:16];
regcAddr = inst[15:11];
imm = {27'b0,inst[10:6]};//移位复用imm
end
`Inst_sra:
begin
op = `Sra;
regaRead = `Invalid;
regbRead = `Valid;
regcWrite = `Valid;
regaAddr = `Zero;
regbAddr = inst[20:16];
regcAddr = inst[15:11];
imm = {27'b0,inst[10:6]};//移位复用imm
end
//JR型指令
`Inst_jr:
begin
op = `J;
regaRead = `Valid;//需要读rs
regbRead = `Invalid;
regcWrite = `Invalid;
regaAddr = inst[25:21];
regbAddr = `Zero;
regcAddr = `Zero;
jAddr = regaData;//regaData=(regaAddr)
jCe = `Valid;
imm = `Zero;
end
`Inst_jalr:
begin
op = `Jal;
regaRead = `Valid;
regbRead = `Invalid;
regcWrite = `Valid;
regaAddr = inst[25:21];
regbAddr = `Zero;
regcAddr = 5'b11111;
jAddr = regaData;
jCe = `Valid;
imm = npc;//regbData中存imm npc
end
//12条整数指令
`Inst_slt:
begin
op = `Slt;
regaRead = `Valid;
regbRead = `Valid;
regcWrite = `Valid;
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = inst[15:11];
imm = `Zero;
end
//乘除指令
`Inst_mult:
begin
op = `Mult;
regaRead = `Valid;
regbRead = `Valid;
regcWrite = `Invalid;//写到HILO寄存器中,而不是通用寄存器中
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = `Zero;
imm = `Zero;
end
`Inst_multu:
begin
op = `Multu;
regaRead = `Valid;
regbRead = `Valid;
regcWrite = `Invalid;//写到HILO寄存器中,而不是通用寄存器中
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = `Zero;
imm = `Zero;
end
`Inst_div:
begin
op = `Div;
regaRead = `Valid;
regbRead = `Valid;
regcWrite = `Invalid;//写到HILO寄存器中,而不是通用寄存器中
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = `Zero;
imm = `Zero;
end
`Inst_divu:
begin
op = `Divu;
regaRead = `Valid;
regbRead = `Valid;
regcWrite = `Invalid;//写到HILO寄存器中,而不是通用寄存器中
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = `Zero;
imm = `Zero;
end
//后4条指令
`Inst_mfhi:
begin
op = `Mfhi;
regaRead = `Invalid;
regbRead = `Invalid;
regcWrite = `Valid;//从HILO寄存器中,写到通用寄存器中
regaAddr = `Zero;
regbAddr = `Zero;
regcAddr = inst[15:11];
imm = `Zero;//HiLo的数据在EX中得到
end
`Inst_mflo:
begin
op = `Mflo;
regaRead = `Invalid;
regbRead = `Invalid;
regcWrite = `Valid;//从HILO寄存器中,写到通用寄存器中
regaAddr = `Zero;
regbAddr = `Zero;
regcAddr = inst[15:11];
imm = `Zero;//HiLo的数据在EX中得到
end
`Inst_mthi:
begin
op = `Mthi;
regaRead = `Valid;//从通用寄存器读出
regbRead = `Invalid;
regcWrite = `Invalid;//写到HILO寄存器中,而不是通用寄存器中
regaAddr = inst[25:21];
regbAddr = `Zero;
regcAddr = `Zero;
imm = `Zero;
end
`Inst_mtlo:
begin
op = `Mtlo;
regaRead = `Valid;//从通用寄存器读出
regbRead = `Invalid;
regcWrite = `Invalid;//写到HILO寄存器中,而不是通用寄存器中
regaAddr = inst[25:21];
regbAddr = `Zero;
regcAddr = `Zero;
imm = `Zero;
end
default:
begin
regaRead = `Invalid;
regbRead = `Invalid;
regcWrite = `Invalid;
regaAddr = `Zero;
regbAddr = `Zero;
regcAddr = `Zero;
imm = `Zero;
end
endcase
//J型指令
`Inst_j:
begin
op = `J;
regaRead = `Invalid;
regbRead = `Invalid;
regcWrite = `Invalid;//不需要写
regaAddr = `Zero;
regbAddr = `Zero;
regcAddr = `Zero;
jAddr = {npc[31:28], inst[25:0], 2'b00};
jCe = `Valid;
imm = `Zero;
end
`Inst_jal:
begin
op = `Jal;
regaRead = `Invalid;
regbRead = `Invalid;
regcWrite = `Valid;//需要把npc写入R31中
regaAddr = `Zero;
regbAddr = `Zero;
regcAddr = 5'b11111;
jAddr = {npc[31:28], inst[25:0], 2'b00};
jCe = `Valid;
imm = npc;
end
//J+型指令
`Inst_beq:
begin
op = `Beq;
regaRead = `Valid;
regbRead = `Valid;
regcWrite = `Invalid;
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = `Zero;
jAddr = npc+{{14{inst[15]}},inst[15:0], 2'b00};
if(regaData==regbData)
jCe = `Valid;//等于有效
else
jCe = `Invalid;
imm = `Zero;
end
`Inst_bne:
begin
op = `Beq;
regaRead = `Valid;
regbRead = `Valid;
regcWrite = `Invalid;
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = `Zero;
jAddr = npc+{{14{inst[15]}},inst[15:0], 2'b00};
if(regaData!=regbData)
jCe = `Valid;//等于有效
else
jCe = `Invalid;
imm = `Zero;
end
`Inst_bltz:
begin
op = `Bltz;
regaRead = `Valid;
regbRead = `Valid;//若regbRead无效,则regbData=imm=0
regcWrite = `Invalid;
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = `Zero;
jAddr = npc+{{14{inst[15]}},inst[15:0], 2'b00};
if(regaData<regbData)
jCe = `Valid;//小于有效
else
jCe = `Invalid;
imm = 32'b0;
end
`Inst_bgtz:
begin
op = `Bgtz;
regaRead = `Valid;
//regbRead = `Valid;//若regbRead有效,则regbData=(regbAddr)
regbRead = `Invalid;//若regbRead无效,则regbData=imm=0
regcWrite = `Invalid;
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = `Zero;
jAddr = npc+{{14{inst[15]}},inst[15:0], 2'b00};
if(regaData>regbData)
jCe = `Valid;//大于有效
else
jCe = `Invalid;
imm = 32'b0;
end
//Load Store指令
`Inst_lw:
begin
op = `Lw;
regaRead = `Valid;
regbRead = `Invalid;
regcWrite = `Valid;
regaAddr = inst[25:21];
regbAddr = `Zero;
regcAddr = inst[20:16];
imm = {{16{inst[15]}},inst[15:0]};
end
`Inst_sw:
begin
op = `Sw;
regaRead = `Valid;
regbRead = `Valid;
regcWrite = `Invalid;
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = `Zero;
imm = {{16{inst[15]}},inst[15:0]};
end
//ll sc
`Inst_ll:
begin
op = `Ll;
regaRead = `Valid;
regbRead = `Invalid;
regcWrite = `Valid;
regaAddr = inst[25:21];
regbAddr = `Zero;
regcAddr = inst[20:16];
imm = {{16{inst[15]}},inst[15:0]};
end
`Inst_sc:
begin
op = `Sc;
regaRead = `Valid;
regbRead = `Valid;
regcWrite = `Valid;//还需给rt赋值为1
regaAddr = inst[25:21];
regbAddr = inst[20:16];
regcAddr = inst[20:16];//还需给rt赋值为1
imm = {{16{inst[15]}},inst[15:0]};
end
default:
begin
op = `Nop;
regaRead = `Invalid;
regbRead = `Invalid;
regcWrite = `Invalid;
regaAddr = `Zero;
regbAddr = `Zero;
regcAddr = `Zero;
imm = `Zero;
end
endcase
end
/*
//二选一 regaData= regaData_i : imm
always@(*)
if(rst == `RstEnable)
regaData = `Zero;
else if(regaRead == `Valid)
regaData = regaData_i;
else
regaData = imm;
//二选一 regbData= regbData_i : imm
always@(*)
if(rst == `RstEnable)
regbData = `Zero;
else if(regbRead == `Valid)
regbData = regbData_i;
else
regbData = imm;
*/
/*
always@(*)
if(rst == `RstEnable)
regaData = `Zero;
else if(op == `Lw || op == `Sw)
regaData = regaData_i + imm;
else if(regaRead == `Valid)
regaData = regaData_i;
else
regaData = imm;
*/
//原子-修改
always@(*)
if(rst == `RstEnable)
regaData = `Zero;
else if(op == `Lw || op == `Sw || op==`Ll || op==`Sc)
regaData = regaData_i + imm;
else if(regaRead == `Valid)
regaData = regaData_i;
else
regaData = imm;
always@(*)
if(rst == `RstEnable)
regbData = `Zero;
else if(regbRead == `Valid)
regbData = regbData_i;
else
regbData = imm;
endmodule
4 EX 执行
`include "define.v";
//3、执行指令模块
module EX (
input wire rst,
//input wire [5:0] op,
input wire [5:0] op_i,
input wire [31:0] regaData,
input wire [31:0] regbData,
input wire regcWrite_i,
input wire [4:0] regcAddr_i,
input wire [31:0] rHiData,//乘除 读hi数据
input wire [31:0] rLoData,//乘除 读hi数据
output reg [31:0] regcData,
output wire regcWrite,
output wire [4:0] regcAddr,
output wire [5:0] op,
output wire [31:0] memAddr,
output wire [31:0] memData,
output reg whi, //乘除 写hi使能
output reg wlo, //乘除 写lo使能
output reg [31:0] wHiData, //乘除 写hi数据
output reg [31:0] wLoData, //乘除 写lo数据
output reg cp0we, //CPO寄存器的写信号
output reg [4:0] cp0Addr, //CPO寄存器的地址信号
output reg [31:0] cp0wData, //CPO寄存器的写入数据
input wire[31:0] cp0rData, //CPO寄存器的读出数据
input wire[31:0] pc_i, //当前指令地址
input wire [31:0] excptype_i,//输入的异常或中断信息记录
output reg [31:0] excptype, //输出的异常或中断信息记录
output wire [31:0] epc, //输出的epc值,用于eret 指令
output wire [31:0] pc, //输出的pc值,用于异常或中断响应
input wire [31:0] cause, //输入的cause寄存器值
input wire [31:0] status //输入的status寄存器值
);
assign op = op_i;
assign memAddr = regaData;
assign memData = regbData;
//中断
assign pc = pc_i;
assign op = (excptype == `Zero) ?
op_i : `Nop;
assign regcWrite =(excptype == `Zero) ?
regcWrite_i : `Invalid;
always@(*)
if(rst == `RstEnable)
begin
regcData = `Zero;
whi=`Invalid;
wlo=`Invalid;
wHiData=`Zero;
wLoData=`Zero;
end
else
begin
regcData = `Zero;
whi=`Invalid;
wlo=`Invalid;
wHiData=`Zero;
wLoData=`Zero;
cp0we=`Invalid;
cp0wData= `Zero;
cp0Addr =`CP0_epc;
//case(op)
case(op_i)
`Or:
regcData = regaData | regbData;
`And:
regcData = regaData & regbData;
`Xor:
regcData = regaData ^ regbData;
`Add:
regcData = regaData + regbData;
`Sub:
regcData = regaData - regbData;
`Lui:
begin
regcData = regaData | regbData;
end
`Sll:
regcData = regbData << regaData;
`Srl:
regcData = regbData >> regaData;
`Sra:
regcData = ($signed(regbData)) >>> regaData;
//J- JR型
`J:
regcData = `Zero;
`Jal:
regcData = regbData;//regaData有其他用处 jr给pc=jaddr=(rs)
//J+型
`Beq:
regcData = `Zero;
`Bne:
regcData = `Zero;
`Bltz:
regcData = `Zero;
`Bgtz:
regcData = `Zero;
//12条整数指令
`Slt:
begin
if($signed(regaData)<$signed(regbData))
regcData={{31{0}},1};
else
regcData={32{0}};
end
//乘除指令
`Mult:
begin
whi=`Valid;
wlo=`Valid;
{wHiData,wLoData}=
$signed(regaData)*$signed(regbData);
end
`Multu:
begin
whi=`Valid;
wlo=`Valid;
{wHiData,wLoData}=regaData*regbData;
end
`Div:
begin
whi=`Valid;
wlo=`Valid;
wHiData=$signed(regaData)%$signed(regbData);
wLoData=$signed(regaData)/$signed(regbData);
end
`Divu:
begin
whi=`Valid;
wlo=`Valid;
wHiData=regaData%regbData;
wLoData=regaData/regbData;
end
//剩余4条指令
`Mfhi:
regcData = rHiData;
`Mflo:
regcData = rLoData;
`Mthi:
begin
whi=`Valid;
wHiData = regaData;
end
`Mtlo:
begin
wlo=`Valid;
wLoData = regaData;
end
//原子
`Sc:
regcData = 32'b1;
//中断
`Mfc0:
begin
cp0Addr = regaData[4:0];
regcData = cp0rData;
end
`Mtc0:
begin
regcData= `Zero;
cp0we = `Valid;
cp0Addr = regaData[4:0];
cp0wData = regbData;
end
default:
regcData = `Zero;
endcase
end
/*增加关于中断查询和响应的代码*/
//tips:cp0rData默认读出的是epc的地址
assign epc = (excptype == 32'h0000_0200) ? cp0rData : `Zero;
always@(*)
if(rst ==`RstEnable)
excptype = `Zero;
//Cause's IP[2] Status's IM[2]; Status EXL, IE
else if(cause[10]&& status[10]== 1'b1 && status[1:0] == 2'b01)
//timerInt
excptype = 32'h0000_0004;
else if(excptype_i[8] == 1'b1 && status[1] == 1'b0)
//Syscall
excptype = 32'h00000100;
else if(excptype_i[9]== 1'b1)
//Eret
excptype = 32'h0000_0200;
else
excptype = `Zero;
assign regcWrite = regcWrite_i;
assign regcAddr = regcAddr_i;
endmodule
5 MEM 访存
`include "define.v";
//访存(mem)模块设计
module MEM(
input wire rst,
input wire [5:0] op,
input wire [31:0] regcData,
input wire [4:0] regcAddr,
input wire regcWr,
input wire [31:0] memAddr_i,
input wire [31:0] memData,
input wire [31:0] rdData,
input wire rLLbit, //llsc
output wire [4:0] regAddr,
output wire regWr,
output wire [31:0] regData,
output wire [31:0] memAddr,
output reg [31:0] wtData,
output reg memWr,
output reg memCe,
output reg wbit, //llsc
output reg wLLbit //llsc
);
assign regAddr = regcAddr;
assign regWr = regcWr;
// assign regData = (op == `Lw) ? rdData : regcData;
//因为regData是wire型的,所以为了不修改原来的代码,就不使用always
//而是修改regcData的值,来传到regData
//二选一,选出Sc指令的rt<-1或rt<0
wire [31:0]regDataLL= (rLLbit==`SetFlag) ? 32'b1 : 32'b0;
//二选一,存往regFile的值 sc指令存的值regcDataLL 还是 寄存器传入的值regcData
wire [31:0]regcDataLL= (op == `Sc ) ? regDataLL : regcData;
//二选一,存往regFile的值 lw取得的值rdData 还是 寄存器传入的值regcData
assign regData = (op == `Lw) ? rdData : regcDataLL;
assign memAddr = memAddr_i;
always @ (*)
if(rst == `RstEnable)
begin
wtData = `Zero;
memWr = `RamUnWrite;
memCe = `RamDisable;
wbit= `Invalid;
wLLbit=`ClearFlag;
end
else
begin
wtData = `Zero;
memWr = `RamUnWrite;
memCe = `RamDisable;
wbit= `Invalid;
wLLbit=`ClearFlag;
case(op)
`Lw:
begin
wtData = `Zero;
memWr = `RamUnWrite;
memCe = `RamEnable;
end
`Sw:
begin
wtData = memData;
memWr = `RamWrite;
memCe = `RamEnable;
end
//Ll Sc
`Ll:
begin
//rt<-datamem[addr]
//不需要写到DataMem中
wtData = `Zero;
memWr = `RamUnWrite;
memCe = `RamEnable;
//LLbit<-1
wbit=`Valid;
wLLbit = `SetFlag;
end
`Sc:
begin
if(rLLbit==`SetFlag)
begin
//datamem[addr]<-rt
wtData = memData;
memWr = `RamWrite;
memCe = `RamEnable;
//rt<-1
//在EX中实现
//LLbit<-0
wbit=`Valid;
wLLbit = `ClearFlag;
end
else
begin
wbit=`Valid;
wLLbit = `ClearFlag;
end
end
default:
begin
wtData = `Zero;
memWr = `RamUnWrite;
memCe = `RamDisable;
wbit= `Invalid;
wLLbit=`ClearFlag;
end
endcase
end
endmodule
6 DataMem 数据存储器
`include "define.v";
//数据存储器(DataMem)模块设计
module DataMem(
input wire clk,
input wire ce,
input wire we,
input wire [31:0] addr,
input wire [31:0] wtData,
output reg [31:0] rdData
);
reg [31:0] datamem [1023 : 0];
always@(*)
if(ce == `RamDisable)
rdData = `Zero;
else
rdData = datamem[addr[11 : 2]];
always@(posedge clk)
if(ce == `RamEnable && we == `RamWrite)
datamem[addr[11 : 2]] = wtData;
else ;
endmodule
7 RegFile 存取
`include "define.v";
//4、为操作数取值存值模块
//取值 regaData regbData
//存值 wdata
module RegFile(
input wire clk,
input wire rst,
input wire we,
input wire [4:0] waddr,
input wire [31:0] wdata,
input wire regaRead,
input wire regbRead,
input wire [4:0] regaAddr,
input wire [4:0] regbAddr,
output reg [31:0] regaData,
output reg [31:0] regbData
);
reg [31:0] reg32 [31 : 0];
always@(*)
if(rst == `RstEnable)
regaData = `Zero;
else if(regaAddr == `Zero)
regaData = `Zero;
else
regaData = reg32[regaAddr];
always@(*)
if(rst == `RstEnable)
regbData = `Zero;
else if(regbAddr == `Zero)
regbData = `Zero;
else
regbData = reg32[regbAddr];
always@(posedge clk)
if(rst == `RstDisable)
if((we == `Valid) && (waddr != `Zero))
reg32[waddr] = wdata;
else ;
else ;
endmodule
A HiLo 高位低位寄存器
`include "define.v"
module HiLo (
input wire rst,
input wire clk ,
input wire [31:0] wHiData,
input wire [31:0] wLoData,
input wire whi ,
input wire wlo ,
output reg [31:0] rHiData,
output reg [31:0] rLoData
);
reg [31:0]hi,lo;//内部存储
always@ (*)
if(rst==`RstEnable)
begin
rHiData = `Zero;
rLoData = `Zero;
end
else
begin
rHiData = hi;
rLoData = lo;
end
always@(posedge clk)
if (rst ==`RstDisable && whi==`Valid)
hi=wHiData;
else ;
always@(posedge clk)
if (rst ==`RstDisable && wlo==`Valid)
lo=wLoData;
else ;
endmodule
B LLbit LLbit寄存器
`include "define.v"
//LLbit寄存器
module LLbit(
input wire clk,
input wire rst,
input wire excpt,
input wire wbit, //写信号
input wire wLLbit, //写数据
output reg rLLbit //读数据
);
reg LLbit;//内部存储
always@(*)
if(rst == `RstEnable)
rLLbit = `Zero;
else
rLLbit = LLbit;
always@(posedge clk)
if(rst ==`RstDisable && wbit==`Valid)
LLbit=wLLbit;
else ;
endmodule
C CP0 协处理器
`include "define.v"
//协处理器模块
module CP0(
input wire clk, //时钟信号
input wire rst, //复位信号
input wire cp0we, //CP0寄存器的写信号
input wire[4:0] cp0Addr, //CP0寄存器的地址信号
input wire[31:0] cp0wData, //CP0寄存器的写入数据
output reg[31:0] cp0rData, //CP0寄存器的读出数据
input wire[5:0] intr, //输入硬件中断
output reg intimer, //输出定时中断
input wire[31:0] excptype,//异常和中断的记录信息
input wire[31:0] pc, //当前指令地址
output wire[31:0] cause, //寄存器Cause的输出值
output wire[31:0] status //寄存器Status的输出值
);
reg[31:0] Count;
reg[31:0] Compare;
reg[31:0] Status;
reg[31:0] Cause;
reg[31:0] Epc;
assign cause = Cause;
assign status = Status;
always@(*)
Cause[15:10]= intr;//对应IP[7:2]
always@(posedge clk)
if(rst == `RstEnable)
begin
Count= `Zero;
Compare = `Zero;
Status= 32'h10000000;
Cause = `Zero;
Epc = `Zero;
intimer = `IntrNotOccur;
end
else
begin
Count = Count + 1;
if(Compare != `Zero && Count == Compare)
intimer = `IntrOccur;
if(cp0we == `Valid)
case(cp0Addr)
`CP0_count:
Count = cp0wData;
`CP0_compare:
begin
Compare = cp0wData;
intimer = `IntrNotOccur;
end
`CP0_status:
Status = cp0wData;
`CP0_epc:
Epc = cp0wData;
`CP0_cause:
begin
Cause[9:8]=cp0wData[9:8];
Cause[23:22]= cp0wData[23:22];
end
default: ;
endcase
case(excptype)
//timerInt
32'h0000_0004:
begin
//interupt instruction
Epc = pc;
//Status's Ex1
Status[1]=1'b1;
//Cause's ExcCode
Cause[6:2]= 5'b00000;
end
//Syscall
32'h0000_0100:
begin
Epc = pc+ 4;
Status[1]= 1'b1;
Cause[6:2]= 5'b01000;
end
//Eret
32'h0000_0200:
Status[1]=1'b0;
default : ;
endcase
end
always@(*)
if(rst==`RstEnable)
cp0rData= `Zero;
else
case(cp0Addr)
`CP0_count:
cp0rData = Count ;
`CP0_compare:
cp0rData = Compare;
`CP0_status:
cp0rData = Status;
`CP0_epc:
cp0rData = Epc;
`CP0_cause:
cp0rData= Cause;
default:
cp0rData= `Zero;
endcase
endmodule
D Ctrl 控制模块
`include "define.v"
//控制模块
module Ctrl(
input wire rst, //复位信号
input wire[31:0] excptype, //异常或中断信息记录
input wire [31:0] epc, //输入epc的值,用于eret 指令
output reg [31:0] ejpc, //输出ejpc的值
output reg excpt //中断或异常有效信号
);
always@(*)
if(rst == `RstEnable)
begin
excpt = `Invalid;
ejpc = `Zero;
end
else
begin
excpt = `Valid;
case(excptype)
//timerInt
32'h0000_0004:
ejpc = 32'h00000050;//自己指定:中断服务地址 50h右移2位(即除以4)=20 instMem
//Syscall
32'h0000_0100:
ejpc= 32'h00000040;//自己指定:中断服务地址 40h右移2位(即除以4)=16 instMem
//Eret
32'h0000_0200:
ejpc = epc;
default:
begin
ejpc= `Zero;
excpt = `Invalid;
end
endcase
end
endmodule
8 MIPS 封装
`include "define.v";
//5、MIPS封装
//修改EX实例化,新增Mem实例化
//新增端口rdData wtData memAddr memCe memWr
//原op变为op_i
//新增ls内部变量
module MIPS(
input wire clk,
input wire rst,
input wire [31:0] instruction,
input wire [31:0] rdData,//ls
output wire romCe,
output wire [31:0] instAddr,
output wire [31:0] wtData,//ls
output wire [31:0] memAddr,//ls
output wire memCe,//ls
output wire memWr,//ls
input wire[5:0] intr, //硬件中断的输入信号
output wire intimer //定时中断的输出信号
);
wire [31:0] regaData_regFile, regbData_regFile;
wire [31:0] regaData_id, regbData_id;
wire [31:0] regcData_ex;
//wire [5:0] op;
wire [5:0] op_id; //ls
wire regaRead, regbRead;
wire [4:0] regaAddr, regbAddr;
wire regcWrite_id, regcWrite_ex;
wire [4:0] regcAddr_id, regcAddr_ex;
//J型
wire [31:0] jAddr;
wire jCe;
//ls
wire [5:0] op_ex;
wire[31:0] memAddr_ex,memData_ex;
wire [5:0] regAddr_mem;
wire [31:0] regData_mem;
wire regWr_mem;
//md-hl
wire [31:0] wHiData_ex;
wire [31:0] wLoData_ex;
wire whi;
wire wlo;
wire [31:0] rHiData_ex;
wire [31:0] rLoData_ex;
//llsc
wire excpt;
wire wbit;
wire wLLbit;
wire rLLbit;
//中断
wire cp0we;
wire[4:0] cp0Addr;
wire[31:0] cp0wData;
wire[31:0] cp0rData;
wire[31:0] epc_ex , ejpc;
wire[31:0] excptype_id,excptype_ex;
wire[31:0] cause, status;
wire[31:0] pc_id, pc_ex;
//中断修改
IF if0(
.clk(clk),
.rst(rst),
.jAddr(jAddr),//J型
.jCe(jCe),//J型
.ce(romCe),
.pc(instAddr),
.ejpc(ejpc),//异常或中断转移地址
.excpt(excpt)//异常或中断信号
);
//中断修改
ID id0(
.rst(rst),
// .pc(instAddr),//J型
.inst(instruction),
.regaData_i(regaData_regFile),
.regbData_i(regbData_regFile),
//.op(op),
.op(op_id),//ls
.regaData(regaData_id),
.regbData(regbData_id),
.regaRead(regaRead),
.regbRead(regbRead),
.regaAddr(regaAddr),
.regbAddr(regbAddr),
.regcWrite(regcWrite_id),
.regcAddr(regcAddr_id),
.jAddr(jAddr),//J型
.jCe(jCe),//J型
.pc_i(instAddr),//pc的输入信号
.pc(pc_id), //pc的输出信号
.excptype(excptype_id)//中断或异常的记录信息
);
//乘除md-修改EX实例化
//中断修改
EX ex0(
.rst(rst),
//.op(op),
.op_i(op_id),
.regaData(regaData_id),
.regbData(regbData_id),
.regcWrite_i(regcWrite_id),
.regcAddr_i(regcAddr_id),
.rHiData(rHiData_ex),//md
.rLoData(rLoData_ex),//md
.regcData(regcData_ex),
.regcWrite(regcWrite_ex),
.regcAddr(regcAddr_ex),
.op(op_ex),//ls
.memAddr(memAddr_ex),//ls
.memData(memData_ex),//ls
.whi(whi_ex),//md
.wlo(wlo_ex),//md
.wHiData(wHiData_ex),//md
.wLoData(wLoData_ex),//md
.cp0we(cp0we),//CPO的写信号
.cp0Addr(cp0Addr),//CPO的地址信息
.cp0wData(cp0wData),//CPO的写入数据
.cp0rData(cp0rData),//CPO的读出数据
.pc_i(pc_id),//pc的输入值
.excptype_i(excptype_id),//异常或中断的记录信息输入值
.excptype(excptype_ex),//异常或中断的记录信息输出值
.epc(epc_ex),//epc的输出值
.pc(pc_ex),//pc的输出值
.cause(cause),//cause的输入值
.status(status)//status的输入值
);
//新增HiLo寄存器
HiLo hilo0(
.rst(rst),
.clk(clk),
.wHiData(wHiData_ex),
.wLoData(wLoData_ex),
.whi(whi_ex),
.wlo(wlo_ex),
.rHiData(rHiData_ex),
.rLoData(rLoData_ex)
);
//新增Mem实例化
//修改Mem实例化 llsc
MEM mem0(
.rst(rst),
.op(op_ex),
.regcData(regcData_ex),
.regcAddr(regcAddr_ex),
.regcWr(regcWrite_ex),
.memAddr_i(memAddr_ex),
.memData(memData_ex),
.rdData(rdData),
.rLLbit(rLLbit),//llsc
.regAddr(regAddr_mem),
.regWr(regWr_mem),
.regData(regData_mem),
.memAddr(memAddr),
.wtData(wtData),
.memWr(memWr),
.memCe(memCe),
.wbit(wbit), //llsc
.wLLbit(wLLbit)//llsc
);
//新增LLbit实例化 llsc
LLbit llbit0(
.clk(clk),
.rst(rst),
.excpt(excpt),
.wbit(wbit),
.wLLbit(wLLbit),
.rLLbit(rLLbit)
);
//修改RegFile实例化
RegFile regfile0(
.clk(clk),
.rst(rst),
//.we(regcWrite_ex),
.we(regWr_mem),
//.waddr(regcAddr_ex),
.waddr(regAddr_mem),
//.wdata(regcData_ex),
.wdata(regData_mem),
.regaRead(regaRead),
.regbRead(regbRead),
.regaAddr(regaAddr),
.regbAddr(regbAddr),
.regaData(regaData_regFile),
.regbData(regbData_regFile)
);
//中断-新增加模块
CP0 cp0(
.clk(clk),
.rst(rst),
.cp0we(cp0we),
.cp0wData(cp0wData),
.cp0Addr(cp0Addr),
.cp0rData(cp0rData),
.intr(intr),
.intimer(intimer),
.pc(pc_ex),
.excptype(excptype_ex),
.cause(cause),
.status(status)
);
//中断-新增加模块
Ctrl ctrl0(
.rst(rst),
.ejpc(ejpc),
.excpt(excpt),
.excptype(excptype_ex),
.epc(epc_ex)
);
endmodule
9 InstMem 指令存储器
`include "define.v";
//6、指令存储器
module InstMem(
input wire ce,
input wire [31:0] addr,
output reg [31:0] data
);
reg [31:0] instmem [1023 : 0];
always@(*)
if(ce == `RomDisable)
data = `Zero;
else
data = instmem[addr[11 : 2]];
initial
begin
//指令测试
/*
//初始化数据
//ori R0,1100 -- R1 --00001100
instmem [0] = 32'h34011100;
//ori R0,0020 -- R2 --00000020
instmem [1] = 32'h34020020;
//ori R0,ff00 -- R3 --0000ff00
instmem [2] = 32'h3403ff00;
//ori R0,ffff -- R4 --0000ffff
instmem [3] = 32'h3404ffff;
*/
//I型指令测试
/*
//andi R0,ffff --R5 --00000000
instmem [4] = 32'h3005ffff;
//xori R0,ffff --R6 --0000ffff
instmem [5] = 32'h3806ffff;
//addi R0,ffff --R7 --ffffffff
instmem [6] = 32'h2007ffff;
// //subi R0,ffff --R8 --00000001
// instmem [7] = 32'h2408ffff;
//lui R0,ffff --R9 --ffff0000
instmem [8] = 32'h3C09ffff;
*/
/*
//R1=00001100 R2=00000020
instmem [4] = 32'b000000_00001_00010_00101_00000_100000;//add,R5,R1,R2 00001120
instmem [5] = 32'b000000_00001_00010_00110_00000_100101;//or,R6,R1,R2 00001120
*/
//R型指令测试
/*
instmem [6] = 32'b000000_00001_00010_00111_00000_100010;//sub,R7,R1,R2 000010e0
instmem [7] = 32'b000000_00001_00010_01000_00000_100100;//and,R8,R1,R2 00000000
instmem [8] = 32'b000000_00001_00010_01001_00000_100110;//xor,R9,R1,R2 00001120
//lui R0,ffff --R10 --ffff0000
instmem [9] = 32'h3C0Affff;
//R11=fffe0000 R12=7fff8000 R13=ffff8000
// Ra=sa={25'b0,imm[10:6]}
instmem [10] = 32'b000000_00000_01010_01011_00001_000000;//sll,R11,Ra,R10
instmem [11] = 32'b000000_00000_01010_01100_00001_000010;//srl,R12,Ra,R10
instmem [12] = 32'b000000_00000_01010_01101_00001_000011;//sra,R13,Ra,R10
*/
//J- JR型指令测试
/*
//pc=jaddr=npc(4) offset(26) 00(2)
//instmem [6] = 32'h08000001; //j 1 编码000010 pc=0004
instmem [6] = 32'h0C000002; //jal 2 编码000011 pc=0008 r31=npc001c
*/
/*
//pc=jaddr=(rs)
instmem [6] = 32'h3407000C;//ori,R7,000C
//instmem [7] = 32'b000000_00111_00000_00000_00000_001000; //jr R7 编码001000 pc=0000000C
instmem [7] = 32'b000000_00111_00000_00000_00000_001001; //jalr R7 编码001001 pc=0000000C R31=00000020
*/
/*
//J+型指令测试
//pc=jaddr=npc+S14 offset(16) 00(2)
//R1=00001100 R2=00000020 R3=000000ff R4=0000ffff R5=00001120 R6=00001120
//instmem [6] = 32'b000100_00101_00110_0000_0000_0000_0000; //beq r5,r6,0 编码000100 pc=001C
//instmem [6] = 32'b000100_00101_00110_0000_0000_0000_0001; //beq r5,r6,1 编码000100 pc=0020
//instmem [6] = 32'b000101_00001_00110_1111_1111_1111_1110; //bne r5,r6,-2 编码000101 pc=0014
//instmem [6] = 32'b000001_00010_00000_0000_0000_0000_0001; //bltz r2,r0,1 编码000001 pc=0020
instmem [6] = 32'b000111_00001_00000_1111_1111_1111_1110; //bgtz r1,r0,-2 编码010011 pc=0014
//ori R7,0001 -- R7 --00000001
instmem [7] = 32'h34070001; //ori R7 1
//ori R8,0001 -- R8 --00000001
instmem [8] = 32'h34080001; //ori R8 1
*/
/*
//(r1)=0000 1100
// +0000 0018
//addr=0000 1118
// =1000100011000 字节地址
// =100 0100 0110 字地址
// =446H 只有1K空间
// =46H 丢掉了高位的1位
// =70
//mem[70]=(r6)
instmem[6]=32'b101011_00001_00110_0000_0000_0001_1000; //sw r6,0x18(r1)
//(r7)=mem[70]
instmem[7]=32'b100011_00001_00111_0000_0000_0001_1000; //lw r7,0x18(r1)
*/
//测试12条MIPS指令
/*
//测试slt
//R1=00001100 R2=00000020
instmem [6] = 32'b000000_00001_00010_00111_00000_101010;//slt,R7,R1,R2 00000000
//lui R0,ffff --R8 --ffff0000
instmem [7] = 32'h3C08ffff;
//ori R8,ffff --R8 --ffffffff
instmem [8] = 32'b001101_01000_01000_1111_1111_1111_1111;
//lui R0,ffff --R9 --ffff0000
instmem [9] = 32'h3C09ffff;
//ori R9,ffff --R9 --fffffffe
instmem [10] = 32'b001101_01001_01001_1111_1111_1111_1110;
//R8=ffffffff(-1) R9=fffffffe(-2)
instmem [11] = 32'b000000_01001_01000_01010_00000_101010;//slt,R10,R9,R8 00000001
*/
/*
//测试乘除
//R1=00001100 R2=00000020
//multu,R1,R2 0_22000
instmem [6] = 32'b000000_00001_00010_00111_00000_011001;//multu,R1,R2
//ori R7,ffff -- R7 --0000ffff
instmem [7] = 32'h3407ffff; //ori R7 ffff
//sll R7,R7,10h -- R7 --ffff0000
instmem [8] = 32'b000000_00000_00111_00111_10000_000000;//sll R7,R7,10h
//mult R7,R2 ffffffff_ffe00000
instmem [9] = 32'b000000_00111_00010_00000_00000_011000;//mult R7,R2
//divu r1,r2 88_0
instmem [10] = 32'b000000_00001_00010_00000_00000_011011;//divu r1,r2
//div r3,r2 fffff800_0
instmem [11] = 32'b000000_00111_00010_00000_00000_011010;//div r7,r2
*/
/*
//测试剩余4条指令
//R1=00001100 R2=00000020
//mthi,R1--hi=00001100
instmem [6] = 32'b000000_00001_00000_00000_00000_010001;//mthi,R1
//mtlo,R2--lo=00000020
instmem [7] = 32'b000000_00010_00000_00000_00000_010011;//mtlo,R2
//mfhi,R7--R7=00001100
instmem [8] = 32'b000000_00000_00000_00111_00000_010000;//mfhi,R7
//mflo,R8--R8=00000020
instmem [9] = 32'b000000_00000_00000_01000_00000_010010;//mflo,R8
*/
/*
//测试原子指令
//计算地址说明
//(r1)=0000 1100
// +0000 0020
//addr=0000 1120
// =1000100100000 字节地址
// =100 0100 1000 字地址
// =448H 只有1K空间
// =48H 丢掉了高位的1位
// =72
//mem[72]<-->(r7)
//测试功能
//R1=00001100 R2=00000020
//Lpt: LL r7,0x20(r1) //读取程序里的信号量,LLibt=1
//ll r7,0x20(r2) --(r7)=mem[72]=0
instmem [6] = 32'b110000_00001_00111_0000_0000_0010_0000;//ll r7,0x20(r1)
//if(r7 == clearFlag) //判断信号是否被占用,为clearFlag表示没占用
//pc=jaddr=npc+S14 offset(16) 00(2)
//bne,r7,r0,else(+4)
instmem [7] = 32'b000101_00111_00000_0000_0000_0000_0100;//bne,r7,r0,else(+4)
//{
// MOV r7, setFlag //设置本程序的占用标志
//ori R7,ffff -- R7 --0000ffff
instmem [8] = 32'h3407ffff; //ori R7 ffff
// SC r7, 0x20(r1) //设置到信号量里
instmem [9] = 32'b111000_00001_00111_0000_0000_0010_0000;//sc r7,0x20(r1)
// if(r7 == 1) goto Success//如果信号量设置成功,r1就会为1
//pc=jaddr=npc+S14 offset(16) 00(2)
//bne,r1,r0,Success(+2)
instmem [10] = 32'b000101_00111_00000_0000_0000_0000_0010;//bne,r7,r0,Success(+2)
// //如果信号量没有设置成功,重新读信号量,即重新执行LL指令
// else goto Lpt
//j Lpt(6)
//pc=jaddr=npc(4) offset(26) 00(2)
instmem [11] = 32'h08000006;//j Lpt(6) 编码000010 pc=0018
//}
//else goto Lpt
//j Lpt(6)
//pc=jaddr=npc(4) offset(26) 00(2)
instmem [12] = 32'h08000006;//j Lpt(6) 编码000010 pc=0018
//Success:
// 访问指定的存储区域
// set r7,clearFlag
//andi R7,0000 -- R7 --00000000
instmem [13] = 32'h30070000; //andi R7,0000
// lw r7,(0x20)r1
instmem[14]=32'b100011_00001_00111_0000_0000_0010_0000; //lw r7,0x20(r1)
*/
//测试中断指令
/*
//测试syscall
instmem[6]=32'h0000000c;//syscall instruction
instmem[7]=32'h3407ffff;//ori
instmem[8]=32'h3408ffff;//ori
instmem [16]=32'h340affff;//syscall except program
instmem [17]=32'h340bffff;//ori
instmem [18]=32'h42000018;//eret inatruction
*/
//测试定时中断
instmem[0] =32'h34020000; //ori $2, $0,0
instmem[1]= 32'h34010014; //ori $1, $0,20
instmem[2]= 32'h40815800; //mtc0 $1,$11 set compare=20
instmem[3]=32'h3c011000; //lui $1, 0x1000
instmem[4]=32'h34210401; //ori $1, $1,0x0401
instmem[5]= 32'h40816000; //mtc0 $1,$12 set status,enable int
instmem[6]= 32'h08000006; //lpt: j lpt
//interproc first addr Ox0050
instmem[20]= 32'h34030001; //ORI $3,$0,1
instmem[21]= 32'h34040014; //ORI S4, $0,20
instmem[22]= 32'h00431020; //ADD $2,$2,$3
instmem[23]= 32'h40015800; //MFC $1,$11 read compare
instmem[24]=32'h00240820; //ADD $1,$1,$4
instmem[25]= 32'h40815800; //MTC0 s1,$11 set compare
instmem[26]= 32'h42000018; //eret
end
endmodule
10 SOC 顶层
//7、系统封装
//整合MIPS DataMem InstMem
//端口信号只需clk rst,其余信号在MIPS中增加,并且新增使用内部信号连线
module SoC(
input wire clk,
input wire rst
);
wire [31:0] instAddr;
wire [31:0] instruction;
wire romCe;
//ls
wire memCe, memWr;
wire [31:0] memAddr;
wire [31:0] rdData;
wire [31:0] wtData;
//中断
wire[5:0] intr;
wire intimer;
assign intr={5'b0,intimer};
//修改MIPS实例
//中断-修改
MIPS mips0(
.clk(clk),
.rst(rst),
.instruction(instruction),
.instAddr(instAddr),
.romCe(romCe),
.rdData(rdData),
.wtData(wtData),
.memAddr(memAddr),
.memCe(memCe),
.memWr(memWr),
.intr(intr),//中断
.intimer(intr[0])//中断
);
InstMem instrom0(
.ce(romCe),
.addr(instAddr),
.data(instruction)
);
//新增DataMem实例化
DataMem datamem0(
.ce(memCe),
.clk(clk),
.we(memWr),
.addr(memAddr),
.wtData(wtData),
.rdData(rdData)
);
endmodule
11 soc_tb
`include "define.v";
//8、测试系统
module soc_tb;
reg clk;
reg rst;
initial
begin
clk = 0;
rst = `RstEnable;
#100
rst = `RstDisable;
#1000 $stop;
end
always #10 clk = ~ clk;
SoC soc0(
.clk(clk),
.rst(rst)
);
endmodule
最后
2023-5-25 08:19:16
你对我百般注视,
并不能构成万分之一的我,
却是一览无余的你。
祝大家逢考必过
点赞收藏关注哦