首页 > 其他分享 >BFS和DFS基础

BFS和DFS基础

时间:2023-07-15 19:22:44浏览次数:42  
标签:int tree 基础 DFS BFS visit 节点

BFS和DFS基础

搜索简介

搜索是"暴力法"算法的具体实现,是一种吧所有可能的情况都罗列出来,然后逐一检查,从中找到答案的方法。

一般步骤

  1. 找到所有可能的数据,并且永数据结构表示和存储。
  2. 优化:尽量多的排除不符合条件的数据,以减少搜索空间。
  3. 用某个算法快速检索这些数据。

搜索算法的基本思路

搜索的基本算法分为两种:宽度优先搜索(BFS)、深度优先搜索(DFS)。

例子

用"老鼠走迷宫"来解释这两个算法。

  1. 一只老鼠(DFS):再迷宫中先按一条路一直走到头再回头看找到另一条路,重复这个操作直到走完整个迷宫。
  2. 一群老鼠(BFS):每条路都有一只老鼠负责走,把迷宫分为若干层每一圈为一层,每次只有当前层的老鼠都走到下一层时,位于下一层的老鼠才能继续往下走,直到有一只老鼠找到迷宫的出口为止。

BFS是"全面扩散、逐层递进";DFS是"一路到底、逐步退回"。

图示

image-20230715114841436

DFS的顺序是{E,B,A,D,C,G,F,I,H}访问顺序是先访问左节点再访问右节点。

BFS的顺序是{E,B,C,A,D,F,I,C,H}访问顺序是逐层访问。

BFS代码实现

BFS可描述为"BFS=队列"。

特征

  1. 处理完第i层后,才会处理i+1层。
  2. 队列中在任意时刻最多有两层节点,其中i层节点都在i+1前面。

静态二叉树

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int idx=1;

struct Node{
    char v;
    int l,r;
}tree[N];

int newNode(int v)
{
    tree[idx].v=v;
    tree[idx].l=tree[idx].r=0;
    return idx++;
}

void insert(int f,int c,int l_r)
{
    if(!l_r)tree[f].l=c;
    else tree[f].r=c;
}

int buildtree()
{
    int A=newNode('A');int B=newNode('B');int C=newNode('C');
    int D=newNode('D');int E=newNode('E');int F=newNode('F');
    int G=newNode('G');int H=newNode('H');int I=newNode('I');
    insert(E,B,0);insert(E,G,1);insert(B,A,0);insert(B,D,1);
    insert(D,C,0);insert(G,F,0);insert(G,I,1);insert(I,H,0);
    int root=E;
    return root;
}

int main()
{
    int root=buildtree();
    queue<int> q;
    q.push(root);
    while(q.size())
    {
        int t=q.front();
        q.pop();
        cout<<tree[t].v<<" ";
        if(tree[t].l!=0)q.push(tree[t].l);
        if(tree[t].r!=0)q.push(tree[t].r);
    }
    return 0;
}

复杂度分析

  1. 时间复杂度:由于需要检查每条边,且只检查一次,时间复杂度为O(m),m为边的数量。
  2. 空间复杂度:每个点只进出队各一次,空间复杂度为O(n),n为点的数量。

Tips

BFS是逐层扩散的,非常符合在图上计算最短路径,先扩散到的节点离根节点更进。很多最短路径算法都是BFS发展出来的。

DFS的常见操作和代码框架

1.常见操作

DFS可描述为"DFS=递归"。

二叉树的各种DFS操作有:时间戳、DFS序、树的深度、子树节点数、先序输出、中序输出、后序输出。

  1. 时间戳:节点第一次被访问的时间戳。
  2. DFS序:每个节点打印两次,被这两次包围起来的是以它为父节点的一棵子树。
  3. 数的深度:从根节点向子树DFS,每个节点第一次被访问时,深度+1,这个节点回溯时,深度-1。
  4. 子树节点总数:num[i]表示i为父节点的子树上的节点总数。
  5. 先序输出:函数按父节点、左子节点、右子节点的顺序打印。
  6. 中序输出:函数按左子节点、父节点、右子节点的顺序打印。
  7. 后序输出:函数按左子节点、右子节点、父节点的顺序打印。

Tips

"先序+后序"不能确定一棵树。

静态二叉树

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int idx=1;

struct Node{
    char v;
    int l,r;
}tree[N];

int newNode(char v)
{
    tree[idx].v=v;
    tree[idx].l=tree[idx].r=0;
    return idx++;
}

void insert(int f,int c,int l_r)
{
    if(l_r==0)tree[f].l=c;
    else tree[f].r=c;
}

int dfn[N];//第i的时间戳
int dfn_timer=0;
void dfn_order(int father)
{
    if(father!=0)
    {
        dfn[father]=++dfn_timer;
        printf("dfn[%c]=%d;",tree[father].v,dfn[father]);
        dfn_order(tree[father].l);
        dfn_order(tree[father].r);
    }
}

int visit_timer=0;
void visit_order(int f)
{
    if(f!=0)
    {
        printf("visit[%c]=%d;",tree[f].v,++visit_timer);
        visit_order(tree[f].l);
        visit_order(tree[f].r);
        printf("visit[%c]=%d;",tree[f].v,++visit_timer);
    }
}

int deep[N];
int deep_timer=0;
void deep_node(int f)
{
    if(f!=0)
    {
        printf("deep[%c]=%d;",tree[f].v,++deep_timer);
        deep_node(tree[f].l);
        deep_node(tree[f].r);
        deep_timer--;
    }
}

int num[N];
int num_node(int f)
{
    if(f==0)return 0;
    else{
        num[f]=num_node(tree[f].l)+num_node(tree[f].r)+1;
        printf("num[%c]=%d;",tree[f].v,num[f]);
        return num[f];
    }
}

void preorder(int f)
{
    if(f!=0)
    {
        cout<<tree[f].v<<" ";
        preorder(tree[f].l);
        preorder(tree[f].r);
    }
}

void inorder(int f)
{
    if(f!=0)
    {
        inorder(tree[f].l);
        cout<<tree[f].v<<" ";
        inorder(tree[f].r);
    }
}

void postorder(int f)
{
    if(f!=0)
    {
        postorder(tree[f].l);
        postorder(tree[f].r);
        cout<<tree[f].v<<" ";
    }
}

int buildtree()
{
    int A=newNode('A');int B=newNode('B');int C=newNode('C');
    int D=newNode('D');int E=newNode('E');int F=newNode('F');
    int G=newNode('G');int H=newNode('H');int I=newNode('I');
    insert(E,B,0);insert(E,G,1);insert(B,A,0);insert(B,D,1);
    insert(D,C,0);insert(G,F,0);insert(G,I,1);insert(I,H,0);
    int root=E;
    return root;
}

int main()
{
     int root=buildtree();
    cout<<"dfn order:";dfn_order(root);cout<<endl;//时间戳
    cout<<"visit order:";visit_order(root);cout<<endl;//DFS序
    cout<<"deep order:";deep_node(root);cout<<endl;//树的深度
    cout<<"num of tree:";num_node(root);cout<<endl;//子树节点总数
    cout<<"in order:";inorder(root);cout<<endl;//中序
    cout<<"pre order:";preorder(root);cout<<endl;//先序
    cout<<"post order:";postorder(root);cout<<endl;//后序
    return 0;
}

输出

dfn order:dfn[E]=1;dfn[B]=2;dfn[A]=3;dfn[D]=4;dfn[C]=5;dfn[G]=6;dfn[F]=7;dfn[I]=8;dfn[H]=9;
visit order:visit[E]=1;visit[B]=2;visit[A]=3;visit[A]=4;visit[D]=5;visit[C]=6;visit[C]=7;visit[D]=8;visit[B]=9;visit[G]=10;visit[F]=11;visit[F]=12;visit[I]=13;visit[H]=14;visit[H]=15;visit[I]=16;visit[G]=17;visit[E]=18;
deep order:deep[E]=1;deep[B]=2;deep[A]=3;deep[D]=3;deep[C]=4;deep[G]=2;deep[F]=3;deep[I]=3;deep[H]=4;
num of tree:num[A]=1;num[C]=1;num[D]=2;num[B]=4;num[F]=1;num[H]=1;num[I]=2;num[G]=4;num[E]=9;
in order:A B C D E F G H I
pre order:E B A D C G F I H
post order:A C D B F H I G E

复杂度分析

  1. 时间复杂度:由于需要检查每条边,且只检查一次,时间复杂度为O(m),m为边的数量。
  2. 空间复杂度:空间复杂度为O(n),因为使用了长度为n的递归栈。

Tips

DFS搜索的特征是一路深入,适合处理节点间的先后关系、连通性等,在图论中应用很广。

2.DFS代码框架

框架代码

ans;
void dfs(层数,其他参数)
{
    if(出局判断)
    {
        更新答案;
        return;
    }
    (剪枝)
    for(枚举下一层)
        if(used[i]==0)
        {
            used[i]=1;
            dfs(层数+1);
            used[i]=0;
        }
    returns;
}

BFS和DFS的对比

1.时间复杂度对比

大多数情况下,BFS和DFS的时间复杂度差不多,因为他们都需要搜索整个空间。

2.空间复杂度对比

BFS使用的空间往往比DFS大。

3.搜索能力对比

DFS没有BFS的空间消耗问题,但是可能搜索大量无效的节点。

Tips

总结BFS和DFS的特点,DFS更适合找一个任意可行解,BFS更适合找全局最优解。

4.扩展和优化

在BFS和DFS的基础上,发展出了剪枝、记忆化(DFS)、双向广搜(BFS)、迭代加深搜索(DFS)、A*算法(BFS)、IDA*(DFS)等技术,大大提高了搜索能力。

Tips

DFS的代码比BFS更简单,如果一道题目用BFS和DFS都可以解,一般用DFS。

BFS常用去重技巧:BFS的队列,把状态放入队列时,需要判断这个状态是否已经在队列中处理过,如果已经处理过,就不用再入队列,这就是去重。去重能大大优化复杂度。可以自己写hash去重,缺点是浪费空间。用STL set和map去重是更常见的做法。

DFS常用去重技巧:剪枝,如果某个搜索分支不符合要求,就剪去它,不在深入搜索,这样能节省大量计算。

连通性判断

连通性问题是图论中的一个基本问题:寻找一张图中连通的点和边。

判断连通性的方法:BFS、DFS、并查集。

例题

[全球变暖](全球变暖 - 蓝桥云课 (lanqiao.cn))

题目描述

你有一张某海域 NxN* 像素的照片,"."表示海洋、"#"表示陆地,如下所示:

.......

.##....

.##....

....##.

..####.

...###.

.......

其中"上下左右"四个方向上连在一起的一片陆地组成一座岛屿。例如上图就有 2 座岛屿。

由于全球变暖导致了海面上升,科学家预测未来几十年,岛屿边缘一个像素的范围会被海水淹没。具体来说如果一块陆地像素与海洋相邻(上下左右四个相邻像素中有海洋),它就会被淹没。

例如上图中的海域未来会变成如下样子:

.......

.......

.......

.......

....#..

.......

.......

请你计算:依照科学家的预测,照片中有多少岛屿会被完全淹没。

输入描述

第一行包含一个整数 (1≤N≤1000)N (1≤N≤1000)。

以下 N行 N 列代表一张海域照片。

照片保证第 1 行、第 1 列、第 N 行、第 N 列的像素都是海洋。

输出一个整数表示答案。

输入输出样例

示例

输入

7
.......
.##....
.##....
....##.
..####.
...###.
.......

输出

1

运行限制

  • 最大运行时间:1s
  • 最大运行内存: 256M

思路

  1. 计算步骤:遍历一个连通块(找到这个连通块的所有#,并标记已经搜过,不用再搜);再遍历下一个连通块,统计有多少个连通块
  2. 计算复杂度:因为每个像素点只搜索一次且必须至少搜一次,一共有 N2个点,复杂度为O(N2),不可能更好了。

代码模板1(DFS)

#include <bits/stdc++.h>
using namespace std;
const int N=1010;
char mp[N][N];
int st[N][N];
int ji=0,ans;
int d[4][2]={{1,0},{-1,0},{0,-1},{0,1}};

void dfs(int x,int y)
{
    st[x][y]=1;
    if(mp[x+1][y]=='#'&&mp[x-1][y]=='#'&&mp[x][y+1]=='#'&&mp[x][y-1]=='#')
        ji=1;
    for(int i=0;i<4;i++)
    {
        int tx=x+d[i][0],ty=y+d[i][1];
        if(st[tx][ty]==0&&mp[tx][ty]=='#')
        {
            dfs(tx,ty);
        }
    }
}

int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)cin>>mp[i]+1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        {
            if(mp[i][j]=='#'&&st[i][j]==0)
            {
                dfs(i,j);
                if(ji==0)ans++;
                ji=0;
            }
        }
    cout<<ans;
    return 0;
}

Tips

st[tx][ty]==0,如果没有这个条件,那么很多点会重复进行DFS,导致超时。这一种剪枝技术,叫做"记忆化搜索"。

代码模板2(BFS)

#include <bits/stdc++.h>
using namespace std;
const int N=1010;
char mp[N][N];
int st[N][N];
int ji=0,ans;
int d[4][2]={{1,0},{-1,0},{0,-1},{0,1}};

void bfs(int x,int y)
{
    queue<pair<int,int>>q;
    q.push({x,y});
    while(q.size())
    {
        auto t=q.front();
        q.pop();
        int tx=t.first,ty=t.second;
        if(mp[tx+1][ty]=='#'&&mp[tx-1][ty]=='#'&&mp[tx][ty+1]=='#'&&mp[tx][ty-1]=='#')
        ji=1;
        for(int i=0;i<4;i++)
    	{
        int dx=tx+d[i][0],dy=ty+d[i][1];
        if(st[dx][dy]==0&&mp[dx][dy]=='#')
        {
            st[dx][dy]=1;
            q.push({dx,dy});
        }
      }
    }
}

int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)cin>>mp[i]+1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        {
            if(mp[i][j]=='#'&&st[i][j]==0)
            {
                bfs(i,j);
                if(ji==0)ans++;
                ji=0;
            }
        }
    cout<<ans;
    return 0;
}

代码模板3(并查集)

#include <bits/stdc++.h>
using namespace std;
const int N=1010,M=N*N;
char mp[N][N];
int s[M],de[M];
int n,ans;
int d[4][2]={{1,0},{-1,0},{0,-1},{0,1}};

int find(int x)
{
    if(x!=s[x])s[x]=find(s[x]);
    return s[x];
}

void merge(int x,int y)
{
    int t=0;
    int ry=find((x-1)*n+y);
    for(int i=0;i<4;i++)
    {
        int tx=x+d[i][0],ty=y+d[i][1];
        if(mp[tx][ty]=='#')
        {
            t++;
            int rx=find((tx-1)*n+ty);
            if(rx!=ry)s[rx]=ry;
        }
    }
    if(t==4)de[ry]=1;
}

int main()
{
    cin>>n;
    for(int i=1;i<M;i++)s[i]=i;
    for(int i=1;i<=n;i++)cin>>mp[i]+1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        {
            if(mp[i][j]=='#')
                merge(i,j);
        }
    for(int i=1;i<=n*n;i++)
        if(mp[i/n+1][i%n]=='#'&&s[i]==i&&de[i]==0)ans++;
    cout<<ans;
    return 0;
}

Tips

通过并查集把每一个连通块连为一个集合,维护一个数组de[]用来存储是否当前集合所在的岛屿不会被淹没,如果不会被淹没记为1,最后遍历整个集合把那些没有标记过的累加起来就是答案。(一维区间和二维区间的转化可以自己动手算算很简单)。

习题

洛谷

DFS:P1219/P1019/P5194/P5440/P1378

BFS:P1162/P1443/P3956/P1032/P1126

poj

2488/3083/3009/1321/3278/1426/3126/3414/2251

声明

本文是《算法竞赛》的笔记,仅此而已。

标签:int,tree,基础,DFS,BFS,visit,节点
From: https://www.cnblogs.com/ckeri/p/17556725.html

相关文章

  • Python练手小项目——简易版基础SQL模板代码生成器
    1、效果图2、代码源码-ui.py:fromtkinterimport*fromtkinterimportscrolledtext,messageboxfromtkinter.ttkimportComboboximportpymysqldefinit():#创建窗口:实例化一个窗口对象window=Tk()#窗口大小window.geometry("900x550")......
  • jvm基础知识
    1.jvm基础知识说明:jvm除了是压测过程中重点关注的内容,也是面试的重点1.1基础回顾java特点:跨平台内存泄漏是过程,内存溢出是结果jdk,jre,jvm的关系jdk<jre<jvm数据类型及存储基本数据类型:存储在栈内存引用数据类型:值存在堆内存,栈里存堆内存中存放的值的首地址堆栈:堆:线程......
  • Java基础1
    Java基础1whitchbreak,可以使用在switch-case结构中,表示一旦执行到此关键字,就跳出switch-case结构switch结构中的表达式,只能是如下的6种数据类型之一:byte.short、char、int、枚举类型(JDK5.0新增)、String类型(JDK7.0新增)case之后只能声明常量。不能声明范围。break关......
  • C基础2
    字符数组charc1[]={'c','','p','r','o','g'};charc2[]="cprog";//末尾以'\0'为结束符用字符串方式赋值比用字符逐个赋值要多占1个字节,用于存放字符串结束标志'\0';'\0'由编译系统自动加上的 gcc编译过程gcc-Ehell......
  • sql注入基础
    sql注入           意义是:用户在提交表单时输入恶意的sql语句,欺骗后端把其当作正常的数据执行 注入方式分类有两种         按照注入方式分:union注入、布尔盲注、时间注入、报错注入         按照注入点类型分:字符型、数字型  一、按......
  • abc088 <bfs 最短路>
    题目D-GridRepainting思路bfs找到从起点到终点的最短路,+1(起点),即为至少留下的白色块的个数则答案=总白色块数-(最短路+1)代码Code//https://atcoder.jp/contests/abc088/tasks/abc088_d#include<iostream>#include<algorithm>#include<vector>#incl......
  • shell脚本基础
    1.shell基础1.1简介shell介绍shell应用场景:系统管理,文件操作等1.2解释器解释器是一种命令解释器,主要作用是对命令进行运行和解释,将需要执行的操作传递给操作系统内核并执行指定解释器#!/usr/bin/python3不指定,默认就是这个#!/bin/bash#这是一个shell脚本#byliech......
  • Java基础
    跨平台原理Java的跨平台基于编译器和JVM。编译器把源文件编译成与平台无关的字节码class文件,JVM把该文件解释成与平台有关的机器码指令,在平台上执行。Java面向对象的4个特征1抽象提取对象的共性,构成抽象类或接口,由继承抽象类的类或接口的实现类来重写抽象方法。2继承子类继承......
  • Pycharm基础
    Pycharm基础1.添加解释器2.安装包的两种方式3.插件汉化插件以及一种使各分层括号颜色一致的插件......
  • pythongridFS
    PythonGridFS:用于存储和检索大文件的Python库![gridfs_logo](简介PythonGridFS是一个基于Python的库,用于在MongoDB数据库中存储和检索大文件。MongoDB是一个流行的文档型NoSQL数据库,它提供了GridFS作为一个标准的文件系统存储解决方案。GridFS可以处理超出MongoDB文档大小限制......