首页 > 其他分享 >洛谷 P4931 [MtOI2018] 情侣?给我烧了!(加强版)

洛谷 P4931 [MtOI2018] 情侣?给我烧了!(加强版)

时间:2023-07-15 12:55:56浏览次数:68  
标签:typedef 洛谷 res ll long P4931 maxn MtOI2018 情侣

洛谷传送门

设 \(f_i\) 为 \(i\) 对情侣完全错位的方案数,那么答案为:

\[\binom{n}{k} \frac{n!}{(n - k)!} 2^k f_{n - k} \]

分别代表选择 \(k\) 对情侣,选择它们的位置,情侣可以换位。

\(f_i\) 有递推公式:

\[f_i = 4i(i - 1) (f_{i - 1} + 2(i - 1) f_{i - 2}) \]

考虑选出两个人,另外对应的两个人的方案即可。

code
// Problem: P4931 [MtOI2018] 情侣?给我烧了!(加强版)
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P4931
// Memory Limit: 500 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))

using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef long double ldb;
typedef pair<ll, ll> pii;

const int maxn = 5000100, N = 5000000;
const ll mod = 998244353;

inline ll qpow(ll b, ll p) {
	ll res = 1;
	while (p) {
		if (p & 1) {
			res = res * b % mod;
		}
		b = b * b % mod;
		p >>= 1;
	}
	return res;
}

ll n, m, fac[maxn], ifac[maxn], pw[maxn], f[maxn];

inline void init() {
	pw[0] = 1;
	for (int i = 1; i <= N; ++i) {
		pw[i] = pw[i - 1] * 2 % mod;
	}
	fac[0] = 1;
	for (int i = 1; i <= N; ++i) {
		fac[i] = fac[i - 1] * i % mod;
	}
	ifac[N] = qpow(fac[N], mod - 2);
	for (int i = N - 1; ~i; --i) {
		ifac[i] = ifac[i + 1] * (i + 1) % mod;
	}
	f[0] = 1;
	for (int i = 2; i <= N; ++i) {
		f[i] = 1LL * i * (i - 1) % mod * 4 % mod * (f[i - 1] + (i - 1) * 2 % mod * f[i - 2] % mod) % mod;
	}
}

inline ll C(ll n, ll m) {
	if (n < m || n < 0 || m < 0) {
		return 0;
	} else {
		return fac[n] * ifac[m] % mod * ifac[n - m] % mod;
	}
}

void solve() {
	scanf("%lld%lld", &n, &m);
	printf("%lld\n", C(n, m) * C(n, m) % mod * fac[m] % mod * pw[m] % mod * f[n - m] % mod);
}

int main() {
	init();
	int T = 1;
	scanf("%d", &T);
	while (T--) {
		solve();
	}
	return 0;
}

标签:typedef,洛谷,res,ll,long,P4931,maxn,MtOI2018,情侣
From: https://www.cnblogs.com/zltzlt-blog/p/17555975.html

相关文章

  • How to ak 【LGR-145-Div.4】洛谷入门赛 #14?
    A数字判断#include<bits/stdc++.h>#include<ext/pb_ds/assoc_container.hpp>#include<ext/pb_ds/tree_policy.hpp>#include<ext/pb_ds/hash_policy.hpp>#definereregister#definelll__int128#definegcgetchar#defineptputchar#definei......
  • 洛谷 P6667 [清华集训2016] 如何优雅地求和
    洛谷传送门点值不好搞。考虑把它搞成系数一类的东西。由二项式反演,\(f(x)=\sum\limits_{i=0}^x\binom{x}{i}b_i\Leftrightarrowb_i=\sum\limits_{j=0}^i\binom{i}{j}(-1)^{i-j}f(j)\)。然后我们要求:\[\sum\limits_{k=0}^n\sum\limits_{i=0}^ms_i\bino......
  • 洛谷 P3372 【模板】线段树 1
    题目传送门题目描述如题,已知一个数列,你需要进行下面两种操作:1.将某一个数加上x2.求出某区间每一个数的和输入格式第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。接下来M行每行包含3......
  • 线段树模板 洛谷P3374 【模板】树状数组 1
    题目传送门题目描述如题,已知一个数列,你需要进行下面两种操作:1.将某一个数加上x2.求出某区间每一个数的和输入格式第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。接下来M行每行包含3......
  • 洛谷 P6892 [ICPC2014 WF] Baggage
    洛谷传送门感觉这题递归的思想挺值得借鉴的。特判\(n=3\)。首先根据样例不难猜测最小次数为\(n\)。事实上最小次数下界为\(n\),因为设\(x\)为当前相邻元素相同对数,不难发现除第一次操作外\(x\)最多增加\(2\),而终态中\(x=2n-2\)。我们尝试构造能达到下界的方案。......
  • 洛谷 P4869 albus就是要第一个出场 题解
    洛谷P4869albus就是要第一个出场题意给定一个长度为\(n\)的序列\(A\),设可重集合\(S=\left\{\operatorname{xor}_{i=1}^nA_ix_i\midx_i\in\{0,1\}\right\}\),即\(S\)为\(A\)的所有子集的异或和构成的集合。给定一个数\(k\),求\(k\)在\(S\)中的排名。如果\(S\)中......
  • 洛谷 P6109 - [Ynoi2009] rprmq1
    首先将修改操作差分为\(l_1\)时刻给\([l_2,r_2]\)中的值\(+v\),\(r_1+1\)时刻给\([l_2,r_2]\)中的值\(-v\)。这样第\(i\)行的状态相当于执行\(1\simi\)时刻的操作后的状态。猫树分治,把一个询问挂在线段树上满足\(l\lel_1\lemid\ler_1\ler\)的区间\([l,r]\)......
  • 洛谷P4715 【深基16.例1】淘汰赛
    写在前面这是本蒟蒻的第三篇题解。由于作者水平不高,本题解存在有数量庞大的错误。对于题解中的错误、可优化部分,欢迎各位大佬批评指正!不合适的部分,还请多多包涵!本题目来源于洛谷。网址https://www.luogu.com.cn/problem/P4715。本博客非营利性,如遇侵权,请联系作者删除,谢谢!题面......
  • 洛谷P1443:马的遍历--题解
    写在前面这是蒟蒻第一篇题解。作为一名没带脑子的初中生的第一篇题解,本题解必定存在诸多错误,给您带来的不便敬请谅解。对于不足之处与错误,还请多多包涵,并欢迎批评指正!本题目来自于洛谷,网址https://www.luogu.com.cn/problem/P1443。非营利性,侵权请联系删除。题目详情马的遍历......
  • 洛谷 P6620 [省选联考 2020 A 卷] 组合数问题
    洛谷传送门记一下是怎么推的。\[\sum\limits_{k=0}^nf(k)\timesx^k\times\binom{n}{k}\]\[=\sum\limits_{p=0}^m\sum\limits_{k=0}^na_pk^p\timesx^k\times\binom{n}{k}\]\[=\sum\limits_{p=0}^m\sum\limits_{k=0}^nx^k\times\binom......