首页 > 其他分享 >[数据分析与可视化] 基于plottable库绘制精美表格

[数据分析与可视化] 基于plottable库绘制精美表格

时间:2023-07-10 12:25:01浏览次数:49  
标签:数据分析 plottable plt idx 可视化 ColumnDefinition import row

plottable是一个Python库,用于在matplotlib中绘制精美定制的图形表格。plottable的官方仓库地址为:plottable。本文主要参考其官方文档,plottable的官方文档地址为:plottable-doc。plottable安装命令如下:

pip install plottable

本文所有代码见:Python-Study-Notes

# jupyter notebook环境去除warning
import warnings
warnings.filterwarnings("ignore")
import plottable
# 打印plottable版本
print('plottable version:', plottable.__version__)
# 打印matplotlib版本
import matplotlib as plt
print('matplotlib version:', plt.__version__)
plottable version: 0.1.5
matplotlib version: 3.5.3

目录

1 使用说明

1.1 基础使用

下面的代码展示了一个简单的图形表格绘制示例,plottable提供了Table类以创建和展示图形表格。

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

from plottable import Table

# 生成一个包含随机数据的表格
d = pd.DataFrame(np.random.random((5, 5)), columns=["A", "B", "C", "D", "E"]).round(2)
fig, ax = plt.subplots(figsize=(6, 5))
# 基于pandas表格数据创建和展示图形表格
tab = Table(d)

# 保存图片
plt.savefig("table.jpg", dpi=300,bbox_inches='tight')
plt.show()

png

对于plottable的Table类,其构造参数介绍如下:

  • df: pd.DataFrame, 要显示为表格的DataFrame对象
  • ax: mpl.axes.Axes, 绘制表格的坐标轴对象,默认为None
  • index_col: str, DataFrame中的索引列名。默认为None
  • columns: List[str], 哪些列用于绘图。为None表示使用所有列
  • column_definitions: List[ColumnDefinition], 需要设置样式列的style定义类,默认为None
  • textprops: Dict[str, Any], 文本属性的字典,默认为空字典
  • cell_kw: Dict[str, Any], 单元格属性的字典,默认为空字典
  • col_label_cell_kw: Dict[str, Any], 列标签单元格属性的字典,默认为空字典
  • col_label_divider: bool, 是否在列标签下方绘制分隔线,默认为True。
  • footer_divider: bool, 是否在表格下方绘制分隔线,默认为False。
  • row_dividers: bool, 是否显示行分隔线,默认为True
  • row_divider_kw: Dict[str, Any], 行分隔线属性的字典,默认为空字典
  • col_label_divider_kw: Dict[str, Any], 列标签分隔线属性的字典,默认为空字典
  • footer_divider_kw: Dict[str, Any], 页脚分隔线属性的字典,默认为空字典
  • column_border_kw: Dict[str, Any], 列边框属性的字典,默认为空字典
  • even_row_color: str | Tuple, 偶数行单元格的填充颜色,默认为None
  • odd_row_color: str | Tuple, 奇数行单元格的填充颜色,默认为None

在这些参数之中,控制表格绘图效果的参数有以下几类:

  • column_definitions:列的样式自定义
  • textprops:文本的样样式自定义
  • cell_kw:表格单元格的样式自定义
  • 其他设置参数的样式

在这些参数中,最重要的参数是column_definitions,因为column_definitions可以控制几乎所有的绘图效果。接下来本文主要对column_definitions的使用进行具体介绍。

1.2 列的样式自定义

plottable提供了ColumnDefinition类(别名ColDef)来自定义图形表格的单个列的样式。ColumnDefinition类的构造参数如下:

  • name: str,要设置绘图效果的列名
  • title: str = None,用于覆盖列名的绘图标题
  • width: float = 1,列的宽度,默认情况下各列的宽度为轴的宽度/列的总数
  • textprops: Dict[str, Any] = field(default_factory=dict),提供给每个文本单元格的文本属性
  • formatter: Callable = None,用于格式化文本外观的可调用函数
  • cmap: Callable = None,根据单元格的值返回颜色的可调用函数
  • text_cmap: Callable = None,根据单元格的值返回颜色的可调用函数
  • group: str = None,设置每个组都会在列标签上方显示的分组列标签
  • plot_fn: Callable = None,一个可调用函数,将单元格的值作为输入,并在每个单元格上创建一个子图并绘制在其上
    要向其传递其他参数
  • plot_kw: Dict[str, Any] = field(default_factory=dict),提供给plot_fn的附加关键字参数
  • border: str | List = None,绘制垂直边界线,可以是"left" / "l"、"right" / "r"或"both"

通过ColumnDefinition类来设置Table类的column_definitions参数,可以实现不同表格列样式的效果。如果是同时多个列的绘图效果,则需要使用[ColumnDefinition,ColumnDefinition]列表的形式。一些使用示例如下

设置列标题和列宽

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from plottable import ColumnDefinition, ColDef, Table

d = pd.DataFrame(np.random.random((5, 5)), columns=["A", "B", "C", "D", "E"]).round(2)
fig, ax = plt.subplots(figsize=(6, 5))
# name表示设置哪个列的样式
tab = Table(d, column_definitions=[ColumnDefinition(name="A", title="Title A"),
                                   ColumnDefinition(name="D", width=2)])

plt.show()

png

设置列的文字属性和文本格式

from plottable.formatters import decimal_to_percent

d = pd.DataFrame(np.random.random((5, 5)), columns=["A", "B", "C", "D", "E"]).round(2)
fig, ax = plt.subplots(figsize=(6, 5))
# index列的文字居中,加粗
# 列A的文本数值改为百分制
tab = Table(d, column_definitions=[ColumnDefinition(name="index", textprops={"ha": "center", "weight": "bold"}),
                                   ColumnDefinition(name="A", formatter=decimal_to_percent)])

plt.show()

png

设置列单元格背景色和字体颜色

from plottable.cmap import normed_cmap
import matplotlib.cm

d = pd.DataFrame(np.random.random((5, 5)), columns=["A", "B", "C", "D", "E"]).round(2)
fig, ax = plt.subplots(figsize=(6, 5))
# cmap设置单元格背景色
tab = Table(d, column_definitions=[ColumnDefinition(name="A", cmap=matplotlib.cm.tab20, text_cmap=matplotlib.cm.Reds),
                                   ColumnDefinition(name="B", cmap=matplotlib.cm.tab20b),
                                   ColumnDefinition(name="C", text_cmap=matplotlib.cm.tab20c)])

plt.show()

png

设置列的分组名

from plottable.cmap import normed_cmap
import matplotlib.cm

d = pd.DataFrame(np.random.random((5, 5)), columns=["A", "B", "C", "D", "E"]).round(2)
fig, ax = plt.subplots(figsize=(6, 5))
# 将列B和列C视为同一组,该组命名为group_name
tab = Table(d, column_definitions=[ColumnDefinition(name="B", group="group_name"), 
                                   ColumnDefinition(name="C", group="group_name")])

plt.show()

png

设置列边框

from plottable.cmap import normed_cmap
import matplotlib.cm

d = pd.DataFrame(np.random.random((5, 5)), columns=["A", "B", "C", "D", "E"]).round(2)
fig, ax = plt.subplots(figsize=(6, 5))
# 将列B和列C视为同一组,该组命名为group_name
tab = Table(d, column_definitions=[ColumnDefinition(name="A", border="l"), 
                                   ColumnDefinition(name="C",  border="both")])

plt.show()

png

调用函数的使用

ColumnDefinition类的plot_fn和plot_kw参数提供了自定义函数实现表格效果绘制的功能。其中plot_fn表示待调用的函数,plot_kw表示待调用函数的输入参数。此外在plotable.plots预置了一些效果函数,我们可以参考这些效果函数定义自己的绘图函数。预置效果函数如下:

from pathlib import Path
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from matplotlib.colors import LinearSegmentedColormap
from plottable import ColumnDefinition, Table
# 调用预置绘图函数
from plottable.plots import image,monochrome_image,circled_image,bar,percentile_bars,percentile_stars,progress_donut

cmap = matplotlib.cm.tab20
# 柱状图绘制
fig, ax = plt.subplots(figsize=(1, 1))
# 0.7表示数值,lw边框线宽
b = bar(ax, 0.7, plot_bg_bar=True, cmap=cmap, annotate=True, lw=2, height=0.35)
plt.show()

png

# 星星百分比图
fig, ax = plt.subplots(figsize=(2, 1))
stars = percentile_stars(ax, 85, background_color="#f0f0f0")

png

# 圆环图
fig, ax = plt.subplots(figsize=(1, 1))
donut = progress_donut(ax, 73, textprops={"fontsize": 14})
plt.show()

png

对于待调用的函数,可以通过help函数查看这些函数的参数含义。

help(progress_donut)
Help on function progress_donut in module plottable.plots:

progress_donut(ax: matplotlib.axes._axes.Axes, val: float, radius: float = 0.45, color: str = None, background_color: str = None, width: float = 0.05, is_pct: bool = False, textprops: Dict[str, Any] = {}, formatter: Callable = None, **kwargs) -> List[matplotlib.patches.Wedge]
    Plots a Progress Donut on the axes.
    
    Args:
        ax (matplotlib.axes.Axes): Axes
        val (float): value
        radius (float, optional):
            radius of the progress donut. Defaults to 0.45.
        color (str, optional):
            color of the progress donut. Defaults to None.
        background_color (str, optional):
            background_color of the progress donut where the value is not reached. Defaults to None.
        width (float, optional):
            width of the donut wedge. Defaults to 0.05.
        is_pct (bool, optional):
            whether the value is given not as a decimal, but as a value between 0 and 100.
            Defaults to False.
        textprops (Dict[str, Any], optional):
            textprops passed to ax.text. Defaults to {}.
        formatter (Callable, optional):
            a string formatter.
            Can either be a string format, ie "{:2f}" for 2 decimal places.
            Or a Callable that is applied to the value. Defaults to None.
    
    Returns:
        List[matplotlib.patches.Wedge]

通过plot_fn和plot_kw参数设置自定义绘图函数和函数输入参数,可以展示不同的绘图效果,如下所示:

from plottable.cmap import normed_cmap
import matplotlib.cm

d = pd.DataFrame(np.random.random((5, 5)), columns=["A", "B", "C", "D", "E"]).round(2)
fig, ax = plt.subplots(figsize=(6, 5))
# plot_fn和plot_kw
tab = Table(d, textprops={"ha": "center"},
            column_definitions=[ColumnDefinition(name="B", plot_fn=bar,plot_kw={'plot_bg_bar':True,'cmap':cmap, 
                                'annotate':True, 'height':0.5}),
                                ColumnDefinition(name="D", plot_fn=progress_donut,plot_kw={'is_pct':True,})])

plt.show()

png

自定义文字格式

plottable提供了以下三个自定义函数来表示不同的文字格式:

  • decimal_to_percent:将数值数据变为百分比
  • tickcross:将数值格式化为✔或✖
  • signed_integer:添加正负符号

我们可以通过ColumnDefinition的formatter来设置文字格式,如下所示:

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from plottable import ColumnDefinition, Table
from plottable.formatters import decimal_to_percent,tickcross,signed_integer

d = pd.DataFrame(np.random.random((5, 5)), columns=["A", "B", "C", "D", "E"]).round(2)
fig, ax = plt.subplots(figsize=(6, 5))
tab = Table(d, column_definitions=[ColumnDefinition(name="A", formatter=decimal_to_percent),
                                   ColumnDefinition(name="C", formatter=tickcross),
                                   ColumnDefinition(name="D", formatter=signed_integer)])

plt.show()

png

此外,也可以自定义函数来设置文本格式,如下所示:

def setformat(x):
    # 使用format格式函数
    return "{:.2e}".format(x)

d = pd.DataFrame(np.random.random((5, 5)), columns=["A", "B", "C", "D", "E"]).round(2)
fig, ax = plt.subplots(figsize=(6, 5))
tab = Table(d, textprops={"ha": "center"},column_definitions=[ColumnDefinition(name="B", formatter=setformat),
                                   ColumnDefinition(name="D", formatter=lambda x: round(x, 2))])

plt.show()

png

1.3 行列自定义

访问行列单元格

plottable提供了直接访问Table实例的某一行、某一列的方法,如下所示:

from plottable.cmap import normed_cmap
import matplotlib.cm

d = pd.DataFrame(np.random.random((5, 5)), columns=["A", "B", "C", "D", "E"]).round(2)
fig, ax = plt.subplots(figsize=(6, 5))
# 实例化Table对象
tab = Table(d)

png

# 根据列名,提取整列
tab.columns['A']
Column(cells=[TextCell(xy=(1, 0), content=0.0, row_idx=0, col_idx=1), TextCell(xy=(1, 1), content=0.09, row_idx=1, col_idx=1), TextCell(xy=(1, 2), content=0.95, row_idx=2, col_idx=1), TextCell(xy=(1, 3), content=0.08, row_idx=3, col_idx=1), TextCell(xy=(1, 4), content=0.92, row_idx=4, col_idx=1)], index=1)
# 读取某列第1行的内容
tab.columns['B'].cells[1].content
0.04
# 根据行索引,提取整行
tab.rows[1]
Row(cells=[TextCell(xy=(0, 1), content=1, row_idx=1, col_idx=0), TextCell(xy=(1, 1), content=0.09, row_idx=1, col_idx=1), TextCell(xy=(2, 1), content=0.04, row_idx=1, col_idx=2), TextCell(xy=(3, 1), content=0.42, row_idx=1, col_idx=3), TextCell(xy=(4, 1), content=0.64, row_idx=1, col_idx=4), TextCell(xy=(5, 1), content=0.26, row_idx=1, col_idx=5)], index=1)
# 提取表头列名
tab.col_label_row
Row(cells=[TextCell(xy=(0, -1), content=index, row_idx=-1, col_idx=0), TextCell(xy=(1, -1), content=A, row_idx=-1, col_idx=1), TextCell(xy=(2, -1), content=B, row_idx=-1, col_idx=2), TextCell(xy=(3, -1), content=C, row_idx=-1, col_idx=3), TextCell(xy=(4, -1), content=D, row_idx=-1, col_idx=4), TextCell(xy=(5, -1), content=E, row_idx=-1, col_idx=5)], index=-1)

设置单元格样式

在上面的例子可以看到plottable直接访问表格行列对象,因此我们可以通过设置这些对象的绘图属性来直接更改其绘图效果或文字效果,所支持更改的属性如下:

  • 单元格属性
    • set_alpha:设置单元格的透明度。
    • set_color:设置单元格的颜色。
    • set_edgecolor:设置单元格边缘的颜色。
    • set_facecolor:设置单元格内部的颜色。
    • set_fill:设置单元格是否填充。
    • set_hatch:设置单元格的填充图案。
    • set_linestyle:设置单元格边缘线的样式。
    • set_linewidth:设置单元格边缘线的宽度。
  • 字体属性
    • set_fontcolor:设置字体的颜色。
    • set_fontfamily:设置字体的家族。
    • set_fontsize:设置字体的大小。
    • set_ha:设置文本的水平对齐方式。
    • set_ma:设置文本的垂直对齐方式。

示例代码如下:

from plottable.cmap import normed_cmap
import matplotlib.cm

d = pd.DataFrame(np.random.random((5, 5)), columns=["A", "B", "C", "D", "E"]).round(2)
fig, ax = plt.subplots(figsize=(6, 5))
# 实例化Table对象
tab = Table(d)
# 设置行号为1的行的背景颜色
tab.rows[1].set_facecolor("grey")
# 设置B列的字体颜色
tab.columns['B'].set_fontcolor("red")
Column(cells=[TextCell(xy=(2, 0), content=0.38, row_idx=0, col_idx=2), TextCell(xy=(2, 1), content=0.69, row_idx=1, col_idx=2), TextCell(xy=(2, 2), content=0.15, row_idx=2, col_idx=2), TextCell(xy=(2, 3), content=0.74, row_idx=3, col_idx=2), TextCell(xy=(2, 4), content=0.41, row_idx=4, col_idx=2)], index=2)

png

2 绘图实例

2.1 多行样式设置

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

from plottable import Table

d = pd.DataFrame(np.random.random((5, 5)), columns=["A", "B", "C", "D", "E"]).round(2)

fig, ax = plt.subplots(figsize=(6, 3))

# row_dividers显示行的分割线
# odd_row_color奇数行颜色
# even_row_color偶数行颜色
tab = Table(d, row_dividers=False, odd_row_color="#f0f0f0", even_row_color="#e0f6ff")

plt.show()

fig.savefig("table.jpg",dpi=300,bbox_inches='tight')

png

2.2 自定义单元格效果

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from matplotlib.colors import LinearSegmentedColormap

from plottable import ColumnDefinition, Table
from plottable.formatters import decimal_to_percent
from plottable.plots import bar, percentile_bars, percentile_stars, progress_donut

# 自定义颜色
cmap = LinearSegmentedColormap.from_list(
    name="BuYl", colors=["#01a6ff", "#eafedb", "#fffdbb", "#ffc834"], N=256
)

fig, ax = plt.subplots(figsize=(6, 6))

d = pd.DataFrame(np.random.random((5, 4)), columns=["A", "B", "C", "D"]).round(2)

tab = Table(
    d,
    cell_kw={
        "linewidth": 0,
        "edgecolor": "k",
    },
    textprops={"ha": "center"},
    column_definitions=[
        ColumnDefinition("index", textprops={"ha": "left"}),
        ColumnDefinition("A", plot_fn=percentile_bars, plot_kw={"is_pct": True}),
        ColumnDefinition(
            "B", width=1.5, plot_fn=percentile_stars, plot_kw={"is_pct": True}
        ),
        ColumnDefinition(
            "C",
            plot_fn=progress_donut,
            plot_kw={
                "is_pct": True,
                "formatter": "{:.0%}"
                },
            ),
        ColumnDefinition(
            "D",
            width=1.25,
            plot_fn=bar,
            plot_kw={
                "cmap": cmap,
                "plot_bg_bar": True,
                "annotate": True,
                "height": 0.5,
                "lw": 0.5,
                "formatter": decimal_to_percent,
            },
        ),
    ],
)

plt.show()

png

2.3 热图

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from matplotlib.colors import LinearSegmentedColormap
# ColDef是ColumnDefinition的别名
from plottable import ColDef, Table

# 自定义颜色
cmap = LinearSegmentedColormap.from_list(
    name="bugw", colors=["#ffffff", "#f2fbd2", "#c9ecb4", "#93d3ab", "#35b0ab"], N=256
)
# 创建数据
cities = [
    "TORONTO",
    "VANCOUVER",
    "HALIFAX",
    "CALGARY",
    "OTTAWA",
    "MONTREAL",
    "WINNIPEG",
    "EDMONTON",
    "LONDON",
    "ST. JONES",
]
months = [
    "JAN",
    "FEB",
    "MAR",
    "APR",
    "MAY",
    "JUN",
    "JUL",
    "AUG",
    "SEP",
    "OCT",
    "NOV",
    "DEC",
]

data = np.random.random((10, 12)) + np.abs(np.arange(12) - 5.5)
data = (1 - data / (np.max(data)))
data.shape
(10, 12)
# 绘图
d = pd.DataFrame(data, columns=months, index=cities).round(2)
fig, ax = plt.subplots(figsize=(14, 5))

# 自定义各列的绘图效果
column_definitions = [
    ColDef(name, cmap=cmap, formatter=lambda x: "") for name in months
] + [ColDef("index", title="", width=1.5, textprops={"ha": "right"})]

tab = Table(
    d,
    column_definitions=column_definitions,
    row_dividers=False,
    col_label_divider=False,
    textprops={"ha": "center", "fontname": "Roboto"},
    # 设置各个单元格的效果
    cell_kw={
        "edgecolor": "black",
        "linewidth": 0,
    },
)


# 设置列标题文字和背景颜色
tab.col_label_row.set_facecolor("white")
tab.col_label_row.set_fontcolor("black")
# 设置行标题文字和背景颜色
tab.columns["index"].set_facecolor("black")
tab.columns["index"].set_fontcolor("white")
tab.columns["index"].set_linewidth(0)

plt.show()

png

2.4 女子世界杯预测数据展示

step1 准备数据

下载示例数据,所有示例数据在plottable-example_notebooks

# 下载数据集
# !wget https://raw.githubusercontent.com/znstrider/plottable/master/docs/example_notebooks/data/wwc_forecasts.csv
from pathlib import Path

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from matplotlib.colors import LinearSegmentedColormap

from plottable import ColumnDefinition, Table
from plottable.cmap import normed_cmap
from plottable.formatters import decimal_to_percent
from plottable.plots import circled_image # image
cols = [
    "team",
    "points",
    "group",
    "spi",
    "global_o",
    "global_d",
    "group_1",
    "group_2",
    "group_3",
    "make_round_of_16",
    "make_quarters",
    "make_semis",
    "make_final",
    "win_league",
]

# 读取数据
df = pd.read_csv(
    "data/wwc_forecasts.csv",
    usecols=cols,
)

# 展示数据
df.head()
team group spi global_o global_d group_1 group_2 group_3 make_round_of_16 make_quarters make_semis make_final win_league points
0 USA F 98.32748 5.52561 0.58179 0.82956 0.17044 0.00000 1.0 0.78079 0.47307 0.35076 0.23618 6
1 France A 96.29671 4.31375 0.52137 0.99483 0.00515 0.00002 1.0 0.78367 0.42052 0.30038 0.19428 6
2 Germany B 93.76549 3.96791 0.67818 0.98483 0.01517 0.00000 1.0 0.89280 0.48039 0.27710 0.12256 6
3 Canada E 93.51599 3.67537 0.56980 0.38830 0.61170 0.00000 1.0 0.59192 0.36140 0.20157 0.09031 6
4 England D 91.92311 3.51560 0.63717 0.70570 0.29430 0.00000 1.0 0.68510 0.43053 0.16465 0.08003 6

此外,我们需要准备每个国家对应的国旗图片,该数据也在plottable-example_notebooks下。

# 读取图片路径
flag_paths = list(Path("data/country_flags").glob("*.png"))
country_to_flagpath = {p.stem: p for p in flag_paths}

step2 数据处理

该步需要合并数据,将其转换为plottable可用的数据结构。

# 重置列名
colnames = [
    "Team",
    "Points",
    "Group",
    "SPI",
    "OFF",
    "DEF",
    "1st Place",
    "2nd Place",
    "3rd Place",
    "Make Rd Of 16",
    "Make Quarters",
    "Make Semis",
    "Make Finals",
    "Win World Cup",
]

col_to_name = dict(zip(cols, colnames))
col_to_name
{'team': 'Team',
 'points': 'Points',
 'group': 'Group',
 'spi': 'SPI',
 'global_o': 'OFF',
 'global_d': 'DEF',
 'group_1': '1st Place',
 'group_2': '2nd Place',
 'group_3': '3rd Place',
 'make_round_of_16': 'Make Rd Of 16',
 'make_quarters': 'Make Quarters',
 'make_semis': 'Make Semis',
 'make_final': 'Make Finals',
 'win_league': 'Win World Cup'}
df[["spi", "global_o", "global_d"]] = df[["spi", "global_o", "global_d"]].round(1)

df = df.rename(col_to_name, axis=1)
# 删除Points列
df = df.drop("Points", axis=1)
# 插入列
df.insert(0, "Flag", df["Team"].apply(lambda x: country_to_flagpath.get(x)))
df = df.set_index("Team")
df.head()
Flag Group SPI OFF DEF 1st Place 2nd Place 3rd Place Make Rd Of 16 Make Quarters Make Semis Make Finals Win World Cup
Team
USA data/country_flags/USA.png F 98.3 5.5 0.6 0.82956 0.17044 0.00000 1.0 0.78079 0.47307 0.35076 0.23618
France data/country_flags/France.png A 96.3 4.3 0.5 0.99483 0.00515 0.00002 1.0 0.78367 0.42052 0.30038 0.19428
Germany data/country_flags/Germany.png B 93.8 4.0 0.7 0.98483 0.01517 0.00000 1.0 0.89280 0.48039 0.27710 0.12256
Canada data/country_flags/Canada.png E 93.5 3.7 0.6 0.38830 0.61170 0.00000 1.0 0.59192 0.36140 0.20157 0.09031
England data/country_flags/England.png D 91.9 3.5 0.6 0.70570 0.29430 0.00000 1.0 0.68510 0.43053 0.16465 0.08003

step3 绘图

# 设置颜色
cmap = LinearSegmentedColormap.from_list(
    name="bugw", colors=["#ffffff", "#f2fbd2", "#c9ecb4", "#93d3ab", "#35b0ab"], N=256
)
team_rating_cols = ["SPI", "OFF", "DEF"]
group_stage_cols = ["1st Place", "2nd Place", "3rd Place"]
knockout_stage_cols = list(df.columns[-5:])

# 单独设置每一列的绘制参数
col_defs = (
    # 绘制第一部分效果
    [
        ColumnDefinition(
            name="Flag",
            title="",
            textprops={"ha": "center"},
            width=0.5,
            # 设置自定义效果展示函数
            plot_fn=circled_image,
        ),
        ColumnDefinition(
            name="Team",
            textprops={"ha": "left", "weight": "bold"},
            width=1.5,
        ),
        ColumnDefinition(
            name="Group",
            textprops={"ha": "center"},
            width=0.75,
        ),
        ColumnDefinition(
            name="SPI",
            group="Team Rating",
            textprops={"ha": "center"},
            width=0.75,
        ),
        ColumnDefinition(
            name="OFF",
            width=0.75,
            textprops={
                "ha": "center",
                # 设置填充方式
                "bbox": {"boxstyle": "circle", "pad": 0.35},
            },
            cmap=normed_cmap(df["OFF"], cmap=matplotlib.cm.PiYG, num_stds=2.5),
            group="Team Rating",
        ),
        ColumnDefinition(
            name="DEF",
            width=0.75,
            textprops={
                "ha": "center",
                "bbox": {"boxstyle": "circle", "pad": 0.35},
            },
            cmap=normed_cmap(df["DEF"], cmap=matplotlib.cm.PiYG_r, num_stds=2.5),
            group="Team Rating",
        ),
    ]
    # 绘制第二部分效果
    + [
        ColumnDefinition(
            name=group_stage_cols[0],
            title=group_stage_cols[0].replace(" ", "\n", 1),
            formatter=decimal_to_percent,
            group="Group Stage Chances",
            # 设置边框
            border="left",
        )
    ]
    + [
        ColumnDefinition(
            name=col,
            title=col.replace(" ", "\n", 1),
            formatter=decimal_to_percent,
            group="Group Stage Chances",
        )
        for col in group_stage_cols[1:]
    ]
    # 绘制第三部分效果
    + [
        ColumnDefinition(
            name=knockout_stage_cols[0],
            title=knockout_stage_cols[0].replace(" ", "\n", 1),
            formatter=decimal_to_percent,
            cmap=cmap,
            group="Knockout Stage Chances",
            border="left",
        )
    ]
    + [
        ColumnDefinition(
            name=col,
            title=col.replace(" ", "\n", 1),
            formatter=decimal_to_percent,
            cmap=cmap,
            group="Knockout Stage Chances",
        )
        for col in knockout_stage_cols[1:]
    ]
)
# 绘图
fig, ax = plt.subplots(figsize=(18, 18))

table = Table(
    df,
    column_definitions=col_defs,
    row_dividers=True,
    footer_divider=True,
    ax=ax,
    textprops={"fontsize": 14},
    row_divider_kw={"linewidth": 1, "linestyle": (0, (1, 5))},
    col_label_divider_kw={"linewidth": 1, "linestyle": "-"},
    column_border_kw={"linewidth": 1, "linestyle": "-"},
).autoset_fontcolors(colnames=["OFF", "DEF"])


plt.show()
# 保存图片
fig.savefig("wwc_table.jpg", facecolor=ax.get_facecolor(), dpi=300,bbox_inches='tight')

png

2.5 德甲积分排名榜展示

step1 准备数据

from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

from plottable import ColDef, Table
from plottable.plots import image
# 下载联赛数据
# !wget https://projects.fivethirtyeight.com/soccer-api/club/spi_matches.csv
# !wget https://projects.fivethirtyeight.com/soccer-api/club/spi_matches_latest.csv
# 数据地址
FIVETHIRTYEIGHT_URLS = {
    "SPI_MATCHES": "https://projects.fivethirtyeight.com/soccer-api/club/spi_matches.csv",
    "SPI_MATCHES_LATEST": "https://projects.fivethirtyeight.com/soccer-api/club/spi_matches_latest.csv",
}

# 读取数据
# df = pd.read_csv(FIVETHIRTYEIGHT_URLS["SPI_MATCHES_LATEST"])
df = pd.read_csv("data/spi_matches_latest.csv")
df.head()
season date league_id league team1 team2 spi1 spi2 prob1 prob2 ... importance1 importance2 score1 score2 xg1 xg2 nsxg1 nsxg2 adj_score1 adj_score2
0 2019 2019-03-01 1979 Chinese Super League Shandong Luneng Guizhou Renhe 48.22 37.83 0.5755 0.1740 ... 45.9 22.1 1.0 0.0 1.39 0.26 2.05 0.54 1.05 0.00
1 2019 2019-03-01 1979 Chinese Super League Shanghai Greenland Shanghai SIPG 39.81 60.08 0.2387 0.5203 ... 25.6 63.4 0.0 4.0 0.57 2.76 0.80 1.50 0.00 3.26
2 2019 2019-03-01 1979 Chinese Super League Guangzhou Evergrande Tianjin Quanujian 65.59 39.99 0.7832 0.0673 ... 77.1 28.8 3.0 0.0 0.49 0.45 1.05 0.75 3.15 0.00
3 2019 2019-03-01 1979 Chinese Super League Wuhan Zall Beijing Guoan 32.25 54.82 0.2276 0.5226 ... 35.8 58.9 0.0 1.0 1.12 0.97 1.51 0.94 0.00 1.05
4 2019 2019-03-01 1979 Chinese Super League Chongqing Lifan Guangzhou RF 38.24 40.45 0.4403 0.2932 ... 26.2 21.3 2.0 2.0 2.77 3.17 1.05 2.08 2.10 2.10

5 rows × 23 columns

# 筛选德甲联赛数据,并删除为空数据
bl = df.loc[df.league == "German Bundesliga"].dropna()
bl.head()
season date league_id league team1 team2 spi1 spi2 prob1 prob2 ... importance1 importance2 score1 score2 xg1 xg2 nsxg1 nsxg2 adj_score1 adj_score2
497 2022 2022-08-05 1845 German Bundesliga Eintracht Frankfurt Bayern Munich 68.47 91.75 0.1350 0.6796 ... 32.6 71.9 1.0 6.0 0.83 4.50 0.65 2.72 1.05 5.96
514 2022 2022-08-06 1845 German Bundesliga VfL Bochum Mainz 60.73 68.88 0.3568 0.3629 ... 33.5 34.5 1.0 2.0 1.00 1.62 0.96 0.86 1.05 2.10
515 2022 2022-08-06 1845 German Bundesliga Borussia Monchengladbach TSG Hoffenheim 69.38 66.77 0.4872 0.2742 ... 40.2 33.3 3.0 1.0 1.86 0.10 2.51 0.31 2.36 1.05
516 2022 2022-08-06 1845 German Bundesliga VfL Wolfsburg Werder Bremen 68.18 59.82 0.5319 0.2014 ... 30.2 33.3 2.0 2.0 0.81 0.97 1.07 1.25 2.10 2.10
517 2022 2022-08-06 1845 German Bundesliga 1. FC Union Berlin Hertha Berlin 69.98 59.70 0.5479 0.1860 ... 34.9 33.0 3.0 1.0 1.25 0.40 1.66 0.36 3.15 1.05

5 rows × 23 columns

step2 数据处理

# 统计得分
def add_points(df: pd.DataFrame) -> pd.DataFrame:
    # 三元表达式
    # df["score1"] > df["score2"],则返回3
    # np.where(df["score1"] == df["score2"],则返回1
    # 否则为0
    df["pts_home"] = np.where(
        df["score1"] > df["score2"], 3, np.where(df["score1"] == df["score2"], 1, 0)
    )
    df["pts_away"] = np.where(
        df["score1"] < df["score2"], 3, np.where(df["score1"] == df["score2"], 1, 0)
    )
    
    return df

# 统计得分数据
bl = add_points(bl)
# 总得分、总进球数、总助攻数和总黄牌数

# 以下代码先分别统计team1和team2的得分数据,然后将两组数据相加
perform = (
    bl.groupby("team1")[[
        "pts_home",
        "score1",
        "score2",
        "xg1",
        "xg2",
    ]]
    .sum()
    .set_axis(
        [
            "pts",
            "gf",
            "ga",
            "xgf",
            "xga",
        ],
        axis=1,
    )
    .add(
        bl.groupby("team2")[[
            "pts_away",
            "score2",
            "score1",
            "xg2",
            "xg1",
        ]]
        .sum()
        .set_axis(
            [
                "pts",
                "gf",
                "ga",
                "xgf",
                "xga",
            ],
            axis=1,
        )
    )
)

# 由于python和pandas版本问题,如果上面的代码出问题,则使用下面代码
# t1= bl.groupby("team1")[["pts_home","score1","score2","xg1","xg2", ]]
# t1 = t1.sum()
# t1.set_axis( ["pts","gf","ga","xgf","xga", ], axis=1,)
# t2 = bl.groupby("team1")[["pts_home","score1","score2","xg1","xg2", ]]
# t2 = t2.sum()
# t2.set_axis( ["pts","gf","ga","xgf","xga", ], axis=1,)
# perform = (t1.add(t2))

perform.shape
(18, 5)
# 汇总得分表现数据
perform.index.name = "team"

perform["gd"] = perform["gf"] - perform["ga"]

perform = perform[
    [
        "pts",
        "gd",
        "gf",
        "ga",
        "xgf",
        "xga",
    ]
]

perform["games"] = bl.groupby("team1").size().add(bl.groupby("team2").size())
perform.head()
pts gd gf ga xgf xga games
team
1. FC Union Berlin 62 13.0 51.0 38.0 35.93 43.06 34
Bayer Leverkusen 50 8.0 57.0 49.0 53.62 48.20 34
Bayern Munich 71 54.0 92.0 38.0 84.93 40.12 34
Borussia Dortmund 71 39.0 83.0 44.0 75.96 42.69 34
Borussia Monchengladbach 43 -3.0 52.0 55.0 53.05 58.88 34
# 统计各队的胜负数据
def get_wins_draws_losses(games: pd.DataFrame) -> pd.DataFrame:
    return (
        games.rename({"pts_home": "pts", "team1": "team"}, axis=1)
        .groupby("team")["pts"]
        .value_counts()
        .add(
            games.rename({"pts_away": "pts", "team2": "team"}, axis=1)
            .groupby("team")["pts"]
            .value_counts(),
            fill_value=0,
        )
        .astype(int)
        .rename("count")
        .reset_index(level=1)
        .pivot(columns="pts", values="count")
        .rename({0: "L", 1: "D", 3: "W"}, axis=1)[["W", "D", "L"]]
    )

wins_draws_losses = get_wins_draws_losses(bl)
wins_draws_losses.head()
pts W D L
team
1. FC Union Berlin 18 8 8
Bayer Leverkusen 14 8 12
Bayern Munich 21 8 5
Borussia Dortmund 22 5 7
Borussia Monchengladbach 11 10 13
# 合并得分和胜负数据
perform = pd.concat([perform, wins_draws_losses], axis=1)
perform.head()
pts gd gf ga xgf xga games W D L
team
1. FC Union Berlin 62 13.0 51.0 38.0 35.93 43.06 34 18 8 8
Bayer Leverkusen 50 8.0 57.0 49.0 53.62 48.20 34 14 8 12
Bayern Munich 71 54.0 92.0 38.0 84.93 40.12 34 21 8 5
Borussia Dortmund 71 39.0 83.0 44.0 75.96 42.69 34 22 5 7
Borussia Monchengladbach 43 -3.0 52.0 55.0 53.05 58.88 34 11 10 13

step3 映射队标图片

队标图片地址为:plottable-example_notebooks

# 创建队名和队标的索引数据
club_logo_path = Path("data/bundesliga_crests_22_23")
club_logo_files = list(club_logo_path.glob("*.png"))
club_logos_paths = {f.stem: f for f in club_logo_files}
perform = perform.reset_index()

# 添加新列
perform.insert(0, "crest", perform["team"])
perform["crest"] = perform["crest"].replace(club_logos_paths)

# 数据排序
perform = perform.sort_values(by=["pts", "gd", "gf"], ascending=False)

for colname in ["gd", "gf", "ga"]:
    perform[colname] = perform[colname].astype("int32")

perform["goal_difference"] = perform["gf"].astype(str) + ":" + perform["ga"].astype(str)

# 添加排名
perform["rank"] = list(range(1, 19))

perform.head()
crest team pts gd gf ga xgf xga games W D L goal_difference rank
2 data/bundesliga_crests_22_23/Bayern Munich.png Bayern Munich 71 54 92 38 84.93 40.12 34 21 8 5 92:38 1
3 data/bundesliga_crests_22_23/Borussia Dortmund... Borussia Dortmund 71 39 83 44 75.96 42.69 34 22 5 7 83:44 2
10 data/bundesliga_crests_22_23/RB Leipzig.png RB Leipzig 66 23 64 41 67.01 37.48 34 20 6 8 64:41 3
0 data/bundesliga_crests_22_23/1. FC Union Berli... 1. FC Union Berlin 62 13 51 38 35.93 43.06 34 18 8 8 51:38 4
11 data/bundesliga_crests_22_23/SC Freiburg.png SC Freiburg 59 7 51 44 53.11 52.25 34 17 8 9 51:44 5

step4 设定绘图数据

# 设置颜色
row_colors = {
    "top4": "#2d3636",
    "top6": "#516362",
    "playoffs": "#8d9386",
    "relegation": "#c8ab8d",
    "even": "#627979",
    "odd": "#68817e",
}

bg_color = row_colors["odd"]
text_color = "#e0e8df"
# 确定绘图列
table_cols = ["crest", "team", "games", "W", "D", "L", "goal_difference", "gd", "pts"]
perform[table_cols].head()
crest team games W D L goal_difference gd pts
2 data/bundesliga_crests_22_23/Bayern Munich.png Bayern Munich 34 21 8 5 92:38 54 71
3 data/bundesliga_crests_22_23/Borussia Dortmund... Borussia Dortmund 34 22 5 7 83:44 39 71
10 data/bundesliga_crests_22_23/RB Leipzig.png RB Leipzig 34 20 6 8 64:41 23 66
0 data/bundesliga_crests_22_23/1. FC Union Berli... 1. FC Union Berlin 34 18 8 8 51:38 13 62
11 data/bundesliga_crests_22_23/SC Freiburg.png SC Freiburg 34 17 8 9 51:44 7 59
# 定义各列绘图效果
table_col_defs = [
    ColDef("rank", width=0.5, title=""),
    ColDef("crest", width=0.35, plot_fn=image, title=""),
    ColDef("team", width=2.5, title="", textprops={"ha": "left"}),
    ColDef("games", width=0.5, title="Games"),
    ColDef("W", width=0.5),
    ColDef("D", width=0.5),
    ColDef("L", width=0.5),
    ColDef("goal_difference", title="Goals"),
    ColDef("gd", width=0.5, title="", formatter="{:+}"),
    ColDef("pts", border="left", title="Points"),
]

step5 绘图

fig, ax = plt.subplots(figsize=(14, 12))

plt.rcParams["text.color"] = text_color
# 设置绘图字体
# plt.rcParams["font.family"] = "Roboto"

# 设置背景颜色
fig.set_facecolor(bg_color)
ax.set_facecolor(bg_color)

table = Table(
    perform,
    column_definitions=table_col_defs,
    row_dividers=True,
    col_label_divider=False,
    footer_divider=True,
    index_col="rank",
    columns=table_cols,
    even_row_color=row_colors["even"],
    footer_divider_kw={"color": bg_color, "lw": 2},
    row_divider_kw={"color": bg_color, "lw": 2},
    column_border_kw={"color": bg_color, "lw": 2},
    # 如果设置字体需要添加"fontname": "Roboto"
    textprops={"fontsize": 16, "ha": "center"},
)


# 设置不同行的颜色
for idx in [0, 1, 2, 3]:
    table.rows[idx].set_facecolor(row_colors["top4"])
    
for idx in [4, 5]:
    table.rows[idx].set_facecolor(row_colors["top6"])
    
table.rows[15].set_facecolor(row_colors["playoffs"])

for idx in [16, 17]:
    table.rows[idx].set_facecolor(row_colors["relegation"])
    table.rows[idx].set_fontcolor(row_colors["top4"])


fig.savefig(
    "bohndesliga_table_recreation.png",
    facecolor=fig.get_facecolor(),
    bbox_inches='tight',
    dpi=300,
)

png

3 参考

标签:数据分析,plottable,plt,idx,可视化,ColumnDefinition,import,row
From: https://www.cnblogs.com/luohenyueji/p/17540735.html

相关文章

  • 多子曲线的曲线组件源码定制之详细功能需求,适用工控、军工、金融等数据分析领域 浮云E
    ​ 前文已经详细介绍了通用曲线控件源码定制开发从需求到编码实现,具体可参阅 通用曲线控件源码定制之设计实现篇 和 通用曲线控件定制之重点难点篇(附源码),本文由浮云E绘图开启大项目多曲线海量数据的曲线组件分析和实现之路。 一、需求背景在一些工业控制领域,有大量设备采......
  • 可视化模型地址
    https://github.com/zhangti0708/bigdata-exampleshttps://github.com/iGaoWei/BigDataView......
  • 数据可视化分析
    数据可视化分析1数据初探首先导入要使用的科学计算模块numpy,pandas,可视化matplotlib,seaborn,以及机器学习模块sklearn。importpandasaspdimportnumpyasnpimportseabornassnsimportmatplotlibasmplimportmatplotlib.pyplotaspltfromIPython.displ......
  • mac spark+hive+hadoop 数据分析环境搭建(单机简版)
    apache产品下载地址:http://archive.apache.org/dist/mysql5.6brew方式安装配置:Icon mysql做为元数据存储使用。brewsearchmysqlbrewinstallmysql@5.6 配置mysqlhome:exportMYSQL_HOME=/usr/local/opt/mysql@5.6启动mysql:$MYSQL_HOME/bin/mysql.serverstart$M......
  • 数据代码分享|R语言用CHAID决策树分析花卉栽培影响因素数据可视化、误差分析
    在植物学和农业科学领域,理解影响植物生长和花朵产生的因素对于提高生产效率和优化栽培方法具有重要意义。因此,对于一个包含多个变量的数据集进行全面的分析和可视化是非常有帮助的。本研究基于一个数据集,该数据集包含了花卉栽培过程中的多种变量,其中包括数值型变量(如花朵数量、......
  • 数据代码分享|R语言主成分(PCA)、主轴因子分析(PA)员工满意度调查数据可视化
    全文链接:https://tecdat.cn/?p=33116原文出处:拓端数据部落公众号在现代组织管理中,员工的满意度对于组织的运行和绩效起着至关重要的作用。了解员工的满意度水平以及影响满意度的因素对于提高员工工作动力、维护组织稳定与发展具有重要意义。为了深入探究员工满意度的内在结构和......
  • 企业大数据分析工具有哪些呢?
    大数据通常被定义为具备五个特点的数据资料。这些特点包括数据规模巨大、处理速度快、包含多种类型、价值密度较低以及具备真实性。由于这种数据超出了传统数据处理软件的能力,所以需要借助新的工具,也就是大数据分析工具来进行处理。那么,迄今为止,我们常用的大数据分析工具有哪些?根据......
  • Vue, Django | 数据可视化平台开发
    给公司搞了个互联网设备可视化平台,在地图上展示互联网设备的信息,点击地图不同区域,统计相应的设备信息,生成图表展示出来用的vue-big-screen框架,在原框架基础上,主要干了下面几件事:1.下载不同区域的geojson数据,点击大图的不同区域,调用mapclick方法,将子区域的geojson数据加载出来2......
  • 可视化容器管理工具-portainer.io使用
    续docker日常使用指南背景当我们开始使用docker后,我们的机器上镜像和容器会越来越多,或者有时候我们有多台开发机的时候,单纯使用命令行去管理镜像和容器就变得麻烦了,这时,我们就可以选择一些可视化的容器管理工具来保护我们为数不多的头发了。portainer.io就是这方面的一个不错的......
  • 神器来袭!一个多类型数据源的企业级数据分析工具
    什么是JVS-BIJVS-BI是企业级的数据分析工具,主要用于各种类型数据接入、便捷性数据加工、数据可视化分析、报表统计结果生成、与各种分析结果应用等方面。JVS-BI可以轻松的接入各种数据来源,屏蔽各种数据源之间的使用的差异性,可轻松的完成数据清洗、加工、分析、展现,根据自己的需要,可......