目前 AT 的最优解。
树的话就是根叶链的最大点权和路径,DP 随便搞。考虑扩展到图上,反复删除掉所有度数为 \(1\) 的节点,显然剩下的东西是可以全部取完的,因为它的形态类似于菊花套环,且末端必定为环。将这部分缩起来再跑上面的 DP 就好了。事实上两部分可以同时进行,一个 bfs 就全做完了。
#include<bits/stdc++.h>
#define ld long double
#define ui unsigned int
#define ull unsigned long long
#define int long long
#define eb emplace_back
#define pb pop_back
#define ins insert
#define mp make_pair
#define pii pair<int,int>
#define fi first
#define se second
#define power(x) ((x)*(x))
#define gcd(x,y) (__gcd((x),(y)))
#define lcm(x,y) ((x)*(y)/gcd((x),(y)))
#define lg(x,y) (__lg((x),(y)))
using namespace std;
namespace FastIO
{
template<typename T=int> inline T read()
{
T s=0,w=1; char c=getchar();
while(!isdigit(c)) {if(c=='-') w=-1; c=getchar();}
while(isdigit(c)) s=(s*10)+(c^48),c=getchar();
return s*w;
}
template<typename T> inline void read(T &s)
{
s=0; int w=1; char c=getchar();
while(!isdigit(c)) {if(c=='-') w=-1; c=getchar();}
while(isdigit(c)) s=(s*10)+(c^48),c=getchar();
s=s*w;
}
template<typename T,typename... Args> inline void read(T &x,Args &...args)
{
read(x),read(args...);
}
template<typename T> inline void write(T x,char ch)
{
if(x<0) x=-x,putchar('-');
static char stk[25]; int top=0;
do {stk[top++]=x%10+'0',x/=10;} while(x);
while(top) putchar(stk[--top]);
putchar(ch);
return;
}
}
using namespace FastIO;
namespace MTool
{
#define TA template<typename T,typename... Args>
#define TT template<typename T>
static const int Mod=998244353;
TT inline void Swp(T &a,T &b) {T t=a;a=b;b=t;}
TT inline void cmax(T &a,T b) {a=a>b?a:b;}
TT inline void cmin(T &a,T b) {a=a<b?a:b;}
TT inline void Madd(T &a,T b) {a=a+b>Mod?a+b-Mod:a+b;}
TT inline void Mdel(T &a,T b) {a=a-b<0?a-b+Mod:a-b;}
TT inline void Mmul(T &a,T b) {a=a*b%Mod;}
TT inline void Mmod(T &a) {a=(a%Mod+Mod)%Mod;}
TT inline T Cadd(T a,T b) {return a+b>=Mod?a+b-Mod:a+b;}
TT inline T Cdel(T a,T b) {return a-b<0?a-b+Mod:a-b;}
TT inline T Cmul(T a,T b) {return a*b%Mod;}
TT inline T Cmod(T a) {return (a%Mod+Mod)%Mod;}
TA inline void Madd(T &a,T b,Args... args) {Madd(a,Cadd(b,args...));}
TA inline void Mdel(T &a,T b,Args... args) {Mdel(a,Cadd(b,args...));}
TA inline void Mmul(T &a,T b,Args... args) {Mmul(a,Cmul(b,args...));}
TA inline T Cadd(T a,T b,Args... args) {return Cadd(Cadd(a,b),args...);}
TA inline T Cdel(T a,T b,Args... args) {return Cdel(Cdel(a,b),args...);}
TA inline T Cmul(T a,T b,Args... args) {return Cmul(Cmul(a,b),args...);}
TT inline T qpow(T a,T b) {int res=1; while(b) {if(b&1) Mmul(res,a); Mmul(a,a); b>>=1;} return res;}
TT inline T qmul(T a,T b) {int res=0; while(b) {if(b&1) Madd(res,a); Madd(a,a); b>>=1;} return res;}
TT inline T spow(T a,T b) {int res=1; while(b) {if(b&1) res=qmul(res,a); a=qmul(a,a); b>>=1;} return res;}
TT inline void exgcd(T A,T B,T &X,T &Y) {if(!B) return X=1,Y=0,void(); exgcd(B,A%B,Y,X),Y-=X*(A/B);}
TT inline T Ginv(T x) {T A=0,B=0; exgcd(x,Mod,A,B); return Cmod(A);}
#undef TT
#undef TA
}
using namespace MTool;
inline void file()
{
freopen(".in","r",stdin);
freopen(".out","w",stdout);
return;
}
bool Mbe;
namespace LgxTpre
{
static const int MAX=100010;
static const int inf=2147483647;
static const int INF=4557430888798830399;
static const int mod=1e9+7;
static const int bas=131;
int n,m,x,y,sum,ans;
int deg[MAX],val[MAX],tag[MAX],f[MAX];
vector<int> G[MAX];
inline void lmy_forever()
{
read(n,m);
for(int i=1;i<=n;++i) read(val[i]),sum+=val[i];
for(int i=1;i<=m;++i) read(x,y),++deg[x],++deg[y],G[x].eb(y),G[y].eb(x);
auto bfs=[&]()->void
{
queue<int> q;
for(int i=2;i<=n;++i) if(deg[i]==1) q.emplace(i);
while(!q.empty())
{
int now=q.front(); q.pop();
tag[now]=1,sum-=val[now],f[now]+=val[now];
for(auto to:G[now])
{
cmax(f[to],f[now]);
if(to!=1&&--deg[to]==1) q.emplace(to);
}
}
};
bfs();
for(int i=1;i<=n;++i) if(!tag[i]) cmax(ans,f[i]);
write(ans+sum,'\n');
}
}
bool Med;
signed main()
{
//file();
fprintf(stderr,"%.3lf MB\n",abs(&Med-&Mbe)/1048576.0);
int Tbe=clock();
LgxTpre::lmy_forever();
int Ted=clock();
cerr<<1e3*(Ted-Tbe)/CLOCKS_PER_SEC<<" ms\n";
return (0-0);
}
标签:return,int,题解,void,day2,icpc2015summer,inline,TT,define
From: https://www.cnblogs.com/LittleTwoawa/p/17528750.html