首页 > 其他分享 >hotspot

hotspot

时间:2023-07-03 12:00:29浏览次数:33  
标签:genes False min hs args hotspot adata

点击查看代码
import argparse
import scanpy as sc
import hotspot
import numpy as np
import mplscience
import matplotlib
import matplotlib.pyplot as plt
import pdb

def ParserInput():
    parser = argparse.ArgumentParser(description='hotspot.space')
    parser.add_argument("--h5ad","-a",required=True, dest='h5ad',help='h5ad path',type=str)
    parser.add_argument("--outdir","-o",required=True, dest='outdir',help='result directory',type=str)
    parser.add_argument("--species","-s",required=False, dest='species',help='species,hsa or mmu',type=str,default="hsa")
    parser.add_argument("--prefix","-p",required=False, dest='prefix',help='result file prefix',type=str,default="sample")
    parser.add_argument("--threads","-t",required=False, dest='threads',help='threads num',type=int,default=4)
    parser.add_argument("--mingenes","-g",required=False, dest='mingenes',help='min genes per spot',type=int,default=50)
    parser.add_argument("--mincells","-c",required=False, dest='mincells',help='min cells per spot',type=int,default=1)
    args = parser.parse_args()
    return args

#filter spot and renormalize the data for expression viz on plots
def PreProcess(adata,min_genes,min_cells):
    sc.pp.filter_cells(adata, min_genes=min_genes)
    sc.pp.filter_genes(adata, min_cells=min_cells)
    adata.obs["total_counts"] = np.asarray(adata.X.sum(1)).ravel()
    adata.layers["csc_counts"] = adata.X.tocsc()
    sc.pp.normalize_total(adata)
    sc.pp.log1p(adata)
    return adata

# Create the Hotspot object and the neighborhood graph
def RunHotspot(adata):
    hs = hotspot.Hotspot(
        adata,
        layer_key="csc_counts",
        model='danb',
        latent_obsm_key="spatial",
        umi_counts_obs_key="total_counts",
    )
    hs.create_knn_graph(weighted_graph=True, n_neighbors=30,)
    return hs

'''
@compute autocorrelations for each gene
@Grouping genes into spatial modules
@Compute pair-wise local correlations between these genes
'''
def ModuleDef(hs,jobs):
    hs_results = hs.compute_autocorrelations(jobs=jobs)
    hs_genes = hs_results.head(6000).index
    lcz = hs.compute_local_correlations(hs_genes, jobs=jobs)
    modules = hs.create_modules(min_gene_threshold=20, core_only=False, fdr_threshold=0.05)
    return modules

def main():
    args = ParserInput()
    outdir = args.outdir
    prefix = args.prefix
    jobs = args.threads
    min_genes= args.mingenes
    min_cells = args.mincells
    adata = sc.read(args.h5ad)
    adata = PreProcess(adata,min_genes,min_cells)
    hs = RunHotspot(adata)
    modules = ModuleDef(hs,jobs)
    modules.value_counts()
    fig = plt.figure()
    hs.plot_local_correlations()
    plt.savefig(outdir+"/"+prefix+'.module.pdf')

    results = hs.results.join(hs.modules)
    # Show the top genes for a module
    for module in results.Module.unique().tolist():
        if(not np.isnan(module)):
            result = results.loc[results.Module == module]
            result.sort_values('Z', ascending=False).head(10)
            result.to_csv(outdir+"/"+prefix+".module."+str(module)+".csv")

            # Plot top gene expression in spatial position
            cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
               'grays', ['#DDDDDD', '#000000'])
            genes = result.sort_values('Z', ascending=False).head(6).index
            fig = plt.figure()
            with mplscience.style_context():
                sc.pl.spatial(
                    adata,
                    color=genes,
                    cmap=cmap,
                    frameon=False,
                    vmin='p0',
                    vmax='p95',
                    spot_size=30,
                )
            plt.savefig(outdir+"/"+prefix+'.module.'+str(module)+'.topgene.pdf')

if __name__ == '__main__':
    main()

标签:genes,False,min,hs,args,hotspot,adata
From: https://www.cnblogs.com/-bonjour/p/17522405.html

相关文章