首页 > 其他分享 >7、在Android Studio中调用腾讯开源框架NCNN去实现Yolo-fastest(CPU+GPU)

7、在Android Studio中调用腾讯开源框架NCNN去实现Yolo-fastest(CPU+GPU)

时间:2022-09-28 12:11:19浏览次数:93  
标签:scale convolution max Yolo Studio NCNN ubuntu threshold ncnn


基本思想:想测试一下yolo-fast在Android的运行时间,因为不太喜欢(​​https://github.com/dog-qiuqiu/Yolo-Fastest​​​)的源码移植 ,使用腾讯企鹅的第三方包​​https://github.com/Tencent/ncnn/releases​

本人使用笔记本DELL进行环境构建,测试平板使用咸鱼网淘的~ 双十一~

第一步:创建Android Studio工程,导入opencv4.4模块(java端和c++端,具体参考:6、Android配置opencv4.5及C++ Native Yolo4.0模型检测_sxj731533730)

然后去官网​​https://github.com/Tencent/ncnn/releases​​ 下载ncnn-android-lib.zip,解压;

ubuntu@ubuntu:$ tree -L 2
.
├── arm64-v8a
│ └── libncnn.a
├── armeabi-v7a
│ └── libncnn.a
├── include
│ └── ncnn
├── x86
│ └── libncnn.a
└── x86_64
└── libncnn.a

6 directories, 4 files

然后导入Android Studio工程中,本人按照opencv4.4的文件结构导入,未修改文件结构,只做复制操作

7、在Android Studio中调用腾讯开源框架NCNN去实现Yolo-fastest(CPU+GPU)_#include

ubuntu@ubuntu:~/AndroidStudioProjects/ncnn/app/src/main$ tree -L 3
.
├── AndroidManifest.xml
├── cpp
│ ├── CMakeLists.txt
│ ├── include
│ │ ├── glslang
│ │ ├── ncnn
│ │ ├── opencv2
│ │ └── SPIRV
│ └── native-lib.cpp
├── java
│ └── com
│ └── yolofastest
├── jniLibs
│ └── libs
│ ├── arm64-v8a
│ ├── armeabi-v7a
│ ├── x86
│ └── x86_64
└── res
├── drawable
│ └── ic_launcher_background.xml
├── drawable-v24
│ └── ic_launcher_foreground.xml
├── layout
│ └── activity_main.xml
├── mipmap-anydpi-v26
│ ├── ic_launcher_round.xml
│ └── ic_launcher.xml
├── mipmap-hdpi
│ ├── ic_launcher.png
│ └── ic_launcher_round.png
├── mipmap-mdpi
│ ├── ic_launcher.png
│ └── ic_launcher_round.png
├── mipmap-xhdpi
│ ├── ic_launcher.png
│ └── ic_launcher_round.png
├── mipmap-xxhdpi
│ ├── ic_launcher.png
│ └── ic_launcher_round.png
├── mipmap-xxxhdpi
│ ├── ic_launcher.png
│ └── ic_launcher_round.png
└── values
├── colors.xml
├── strings.xml
└── styles.xml

26 directories, 21 files

对应的jniLibs文件夹结构为:

ubuntu@ubuntu:~/AndroidStudioProjects/ncnn/app/src/main/jniLibs$ tree -L 3.
└── libs
├── arm64-v8a
│ ├── libglslang.a
│ ├── libncnn.a
│ ├── libOGLCompiler.a
│ ├── libopencv_java4.so
│ ├── libOSDependent.a
│ └── libSPIRV.a
├── armeabi-v7a
│ ├── libglslang.a
│ ├── libncnn.a
│ ├── libOGLCompiler.a
│ ├── libopencv_java4.so
│ ├── libOSDependent.a
│ └── libSPIRV.a
├── x86
│ ├── libglslang.a
│ ├── libncnn.a
│ ├── libOGLCompiler.a
│ ├── libopencv_java4.so
│ ├── libOSDependent.a
│ └── libSPIRV.a
└── x86_64
├── libglslang.a
├── libncnn.a
├── libOGLCompiler.a
├── libopencv_java4.so
├── libOSDependent.a
└── libSPIRV.a

5 directories, 24 files

修改对应build.gradle文件

7、在Android Studio中调用腾讯开源框架NCNN去实现Yolo-fastest(CPU+GPU)_java_02

     externalNativeBuild {
cmake {
cppFlags "-std=c++11"
//arguments '-DANDROID=c++_shared'
//abiFilters 'armeabi-v7a','arm64-v8a','x86','x86_64'
}
ndk{
abiFilters 'armeabi-v7a' // x86 armeabi arm64-v8a x86_64

}
}
}
sourceSets{
main{
jniLibs.srcDirs=["src/main/jniLibs/libs"]
}
}

然后配置对应CMakelist.txt文件配置 参考了github中的ncnn官方的教程和example测试所得~

# For more information about using CMake with Android Studio, read the
# documentation: https://d.android.com/studio/projects/add-native-code.html

# Sets the minimum version of CMake required to build the native library.

cmake_minimum_required(VERSION 3.4.1)

# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake builds them for you.
# Gradle automatically packages shared libraries with your APK.

# 添加opencv的头文件目录


include_directories(${CMAKE_SOURCE_DIR}/include)

# 导入opencv的so
add_library(libopencv_java4 SHARED IMPORTED)
set_target_properties(libopencv_java4 PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/../jniLibs/libs/${ANDROID_ABI}/libopencv_java4.so)

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fopenmp")
if(DEFINED ANDROID_NDK_MAJOR AND ${ANDROID_NDK_MAJOR} GREATER 20)
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -static-openmp")
endif()

#导入ncnn
add_library(libncnn STATIC IMPORTED)
set_target_properties(libncnn PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/../jniLibs/libs/${ANDROID_ABI}/libncnn.a)





find_library(android-lib android)
add_library( # Sets the name of the library.
native-lib

# Sets the library as a shared library.
SHARED

# Provides a relative path to your source file(s).
native-lib.cpp )

# Searches for a specified prebuilt library and stores the path as a
# variable. Because CMake includes system libraries in the search path by
# default, you only need to specify the name of the public NDK library
# you want to add. CMake verifies that the library exists before
# completing its build.

find_library( # Sets the name of the path variable.
log-lib

# Specifies the name of the NDK library that
# you want CMake to locate.
log )

# Specifies libraries CMake should link to your target library. You
# can link multiple libraries, such as libraries you define in this
# build script, prebuilt third-party libraries, or system libraries.

target_link_libraries( # Specifies the target library.
native-lib
jnigraphics
libopencv_java4 # 链接opencv的so
libncnn #链接ncnn静态的.a
# Links the target library to the log library
# included in the NDK.
${log-lib}
${android-lib}
)

如果不加这两句

find_library(android-lib android)
target_link_libraries( # Specifies the target library.
.....
${android-lib}
)

会报这个错误

ncnn/src/net.cpp:650: error: undefined reference to 'AAssetManager_open'
ncnn/src/net.cpp:658: error: undefined reference to 'AAsset_close'
ncnn/src/net.cpp:671: error: undefined reference to 'AAssetManager_open'
ncnn/src/net.cpp:679: error: undefined reference to 'AAsset_close'
ncnn/src/net.cpp:691: error: undefined reference to 'AAssetManager_open'
ncnn/src/net.cpp:699: error: undefined reference to 'AAsset_close'
ncnn/src/datareader.cpp:93: error: undefined reference to 'AAsset_seek'
ncnn/src/datareader.cpp:94: error: undefined reference to 'AAsset_getBuffer'

然后开始在native-lib.cpp中开发使用小企鹅的ncnn 调用fast-yolo模型了;代码完全移植了其中的example文件夹的ncnn 源码:​​https://github.com/dog-qiuqiu/Yolo-Fastest​

#include <jni.h>
#include <string>
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/opencv.hpp>
#include <ncnn/benchmark.h>
#include <ncnn/cpu.h>
#include <ncnn/datareader.h>
#include <ncnn/net.h>
#include <ncnn/gpu.h>

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <cstdio>
#include <vector>
#include <algorithm>


using namespace cv;
using namespace std;

extern "C" JNIEXPORT jstring JNICALL
Java_com_yolofastest_ncnn_MainActivity_stringFromJNI(
JNIEnv* env,
jobject /* this */) {
std::string hello = "Hello from C++";

static const char* class_names[] = {"background",
"aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair",
"cow", "diningtable", "dog", "horse",
"motorbike", "person", "pottedplant",
"sheep", "sofa", "train", "tvmonitor"
};

ncnn::Net detector;
detector.load_param("yolo-fastest.param");
detector.load_model("yolo-fastest.bin");
int detector_size_width = 320;
int detector_size_height = 320;
cv::Mat image=imread("dog.jpg");
cv::Mat bgr = image.clone();
int img_w = bgr.cols;
int img_h = bgr.rows;

ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB,\
bgr.cols, bgr.rows, detector_size_width, detector_size_height);

const float mean_vals[3] = {0.f, 0.f, 0.f};
const float norm_vals[3] = {1/255.f, 1/255.f, 1/255.f};
in.substract_mean_normalize(mean_vals, norm_vals);

ncnn::Extractor ex = detector.create_extractor();

ex.set_num_threads(8);
ex.input("data", in);
ncnn::Mat out;
ex.extract("output", out);

for (int i = 0; i < out.h; i++)
{
int label;
float x1, y1, x2, y2, score;
float pw,ph,cx,cy;
const float* values = out.row(i);

x1 = values[2] * img_w;
y1 = values[3] * img_h;
x2 = values[4] * img_w;
y2 = values[5] * img_h;

score = values[1];
label = values[0];
if(x1<0) x1=0;
if(y1<0) y1=0;
if(x2<0) x2=0;
if(y2<0) y2=0;

if(x1>img_w) x1=img_w;
if(y1>img_h) y1=img_h;
if(x2>img_w) x2=img_w;
if(y2>img_h) y2=img_h;
cv::rectangle (image, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(255, 255, 0), 1, 1, 0);

char text[256];
sprintf(text, "%s %.1f%%", class_names[label], score * 100);
int baseLine = 0;
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
cv::putText(image, text, cv::Point(x1, y1 + label_size.height),
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
}

cv::imwrite("demo.jpg", image);
return env->NewStringUTF(hello.c_str()); //实际是把坐标框返回去
}

一切修改完成,然后在我的OPPO R9手机上运行Android Studio看看YOLO-FAST识别我们的看门狗(此看门狗非彼看门狗) 哈哈哈

7、在Android Studio中调用腾讯开源框架NCNN去实现Yolo-fastest(CPU+GPU)_android_03

 CPU版,使用NCNN的库为:ncnn-android-lib 是 android 的静态库(armeabi-v7a + arm64-v8a + x86 + x86_64)

 GPU版,使用NCNN的库为:ncnn-android-vulkan-lib 是 android 的静态库(armeabi-v7a + arm64-v8a + x86 + x86_64,包含vulkan支持)

设备需要使用AIDA64.apk 在设备上做检测,设备是否支持vulkan,一般会在“”“设备” 栏目显示 是否支持Vukan设备等信息~

7、在Android Studio中调用腾讯开源框架NCNN去实现Yolo-fastest(CPU+GPU)_android_04

7、在Android Studio中调用腾讯开源框架NCNN去实现Yolo-fastest(CPU+GPU)_android_05

如果,你的设备支持该组件,恭喜你 你可以在设备上移植NCNN的GPU库,移植方法雷同cpu,我在这个200元的平板上测试,速度达到每帧121ms~~~ (croph*cropw=256*256)

在使用darkent yolo1/2/3/4/fast/*训练自己的模型之后,需要使用ncnn进行转一下格式,

​https://github.com/Tencent/ncnn​

下载完成之后,进行编译

ubuntu@ubuntu:~$ git clone https://github.com/Tencent/ncnn
ubuntu@ubuntu:~$ cd ncnn
ubuntu@ubuntu:~/ncnn$ mkdir build
ubuntu@ubuntu:~/ncnn$ cd build
ubuntu@ubuntu:~/ncnn/build$ cmake ..
ubuntu@ubuntu:~/ncnn/build$ make -j8
ubuntu@ubuntu:~/ncnn/build$ make install
ubuntu@ubuntu:~/ncnn/build$ cd ncnn/tools/darknet/
ubuntu@ubuntu:~/ncnn/build/tools/darknet$ darknet2ncnn **.cfg **.weight a.param a.bin 1

然后模型就转化成功,即可在我提供的源码中调用了;

我们还可以使用小企鹅对模型进行压缩,从模型的1.2MB压缩到343.3KB,小企鹅威武啊~~~

ubuntu@ubuntu:~/ncnn/build/tools$ ./ncnnoptimize original.param original.bin result.param result.bin 1 

生成量化的图片列表

import os
path=r"F:\DEMOTEST\JPEGImages"
my_files = os.listdir(path);
print(my_files)

listFiles = []
for files in my_files:
if "jpg" in files:
#print(files)
patha=os.path.join(path,files)
listFiles.append(patha)

listFiles.sort()
fo = open("jpglist.txt", "w")
for fileName in listFiles:
fo.write(fileName + "\n")
print(fileName)
fo.close()

然后开始开始量化

ubuntu@ubuntu:~/ncnn/build/tools/quantize$ ncnn2table yolov4_opt.param yolov4_opt.bin jpglist.txt result.table mean=[0,0,0] norm=[0.00392,0.00392,0.00392] shape=[416,416,3] pixel=BGR thread=8 method=kl
build histogram 76.47% [ 900 / 1177 ]
build histogram 84.96% [ 1000 / 1177 ]
build histogram 93.46% [ 1100 / 1177 ]
0_34 : max = 2.567000 threshold = 2.176560 scale = 58.348949
1_42 : max = 228.259766 threshold = 59.349770 scale = 2.139857
2_50 : max = 364.625031 threshold = 47.625584 scale = 2.666634
4_63 : max = 117.391670 threshold = 39.694206 scale = 3.199459
5_71 : max = 149.158264 threshold = 48.177830 scale = 2.636067
7_82 : max = 171.264801 threshold = 51.136929 scale = 2.483528
10_97 : max = 151.492798 threshold = 59.435772 scale = 2.136760
12_110 : max = 67.995026 threshold = 26.344753 scale = 4.820694
13_118 : max = 69.356300 threshold = 26.431931 scale = 4.804795
15_129 : max = 88.959381 threshold = 34.119919 scale = 3.722166
18_144 : max = 74.642670 threshold = 64.310051 scale = 1.974808
20_157 : max = 24.993559 threshold = 13.235114 scale = 9.595686
21_165 : max = 34.969898 threshold = 22.052551 scale = 5.758971
23_176 : max = 35.292606 threshold = 26.236813 scale = 4.840527
26_191 : max = 56.171196 threshold = 33.584782 scale = 3.781475
27_201 : max = 25.793427 threshold = 16.290916 scale = 7.795755
28_209 : max = 22.421173 threshold = 16.744719 scale = 7.584481
29_217 : max = 20.924583 threshold = 16.853077 scale = 7.535716
32_250 : max = 22.421173 threshold = 16.744719 scale = 7.584481
35_264 : max = 24.094851 threshold = 16.488737 scale = 7.702227
36_272 : max = 10.068645 threshold = 7.627687 scale = 16.649870
ncnn int8 calibration table create success, best wish for your int8 inference has a low accuracy loss...\(^0^)/...233...
ubuntu@ubuntu:~/ncnn/build/tools/quantize$./ncnn2int8 yolov4_opt.param yolov4_opt.bin yolov4_opt_int8.param yolov4_opt_int8.bin result.table
quantize_convolution 0_34
quantize_convolution 1_42
quantize_convolution 2_50
quantize_convolution 4_63
quantize_convolution 5_71
quantize_convolution 7_82
quantize_convolution 10_97
quantize_convolution 12_110
quantize_convolution 13_118
quantize_convolution 15_129
quantize_convolution 18_144
quantize_convolution 20_157
quantize_convolution 21_165
quantize_convolution 23_176
quantize_convolution 26_191
quantize_convolution 27_201
quantize_convolution 28_209
quantize_convolution 29_217
quantize_convolution 32_250
quantize_convolution 35_264
quantize_convolution 36_272
fuse_requantize 0_34 1_42
fuse_requantize 1_42 2_50
fuse_requantize 26_191 27_201
fuse_requantize 28_209 29_217
fuse_requantize 35_264 36_272
fuse_requantize 27_201 27_201_bn_leaky_split
mac = 3401761792 = 3401.76 M

致谢小企鹅;

标签:scale,convolution,max,Yolo,Studio,NCNN,ubuntu,threshold,ncnn
From: https://blog.51cto.com/u_12504263/5719118

相关文章