首页 > 其他分享 >面试题:海量数据处理利器-布隆过滤器

面试题:海量数据处理利器-布隆过滤器

时间:2022-09-28 09:37:02浏览次数:253  
标签:面试题 hash 元素 布隆 6379 BF 过滤器

目录

作者:小牛呼噜噜 | https://xiaoniuhululu.com
计算机内功、JAVA底层、面试相关资料等更多精彩文章在公众号「小牛呼噜噜 」

概念

通常我们会遇到很多要判断一个元素是否在某个集合中的业务场景,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间也会呈现线性增长,最终达到瓶颈。同时检索速度也越来越慢,上述三种结构的检索时间复杂度分别为O(n), O(logn), O(1)。这个时候,布隆过滤器就应运而生。
布隆过滤器(Bloom Filter)是1970年由布隆提出的。布隆过滤器其实就是一个很长的二进制向量和一系列随机映射函数。可以用于快速检索一个元素是否在一个集合中出现的方法。

原理

如果想判断一个元素是不是在一个集合里,我们一般想到的是将所有元素保存起来,然后通过比较确定。我们熟悉的链表,树等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢。不过世界上还有一种叫作散列表(又叫哈希表)的数据结构。它可以通过一个Hash函数将一个元素映射成一个位阵列中的一个点。这样一来,我们只要看看这个点是不是 1 就知道可以集合中有没有它了。这其实就是布隆过滤器的基本思想。

Hash算法面临的问题就是hash冲突。假设 Hash 函数是良好的,如果我们的位阵列长度为 m 个点,那么如果我们想将冲突率降低到例如 1%, 这个散列表就只能容纳 m/100 个元素。显然这就不叫空间有效了(Space-efficient)。解决方法:就是使用多个 Hash算法如果它们有一个说元素不在集合中,那肯定就不在。如果它们都说在,有一定可能性它们在说谎,虽然概率比较低

算法:

  1. 首先需要k个hash函数,每个函数可以把key散列成为1个整数
  2. 初始化时,需要一个长度为n比特的数组,每个比特位初始化为0
  3. 某个key加入集合时,用k个hash函数计算出k个散列值,并把数组中对应的比特位置为1
  4. 判断某个key是否在集合时,用k个hash函数计算出k个散列值,并查询数组中对应的比特位,如果所有的比特位都是1,认为在集合中。

图片来源于网络

其优点:

  1. 空间效率和查询时间都比一般的算法要好的多,比如增加和查询元素的时间复杂为O(N)
  2. 由于不需要存储key,所以特别节省存储空间。
  3. 保密性强,布隆过滤器不存储元素本身~~

其缺点:

  1. 由于采用hash算法,可能出现hash冲突,导致有一定的误判率,但是可以通过调整参数来降低

布隆过滤器的误判是指多个输入经过哈希之后在相同的bit位置1了,这样就无法判断究竟是哪个输入产生的,因此误判的根源在于相同的 bit 位被多次映射且置 1。

  1. 无法获取元素本身
  2. 由于hash算法导致hash冲突必然存在,所以删除元素是很困难的,而且删掉元素会导致误判率增加。

布隆过滤器的使用场景

我们可以充分利用布隆过滤器的特点:如果布隆过滤器说有一个说元素不在集合中,那肯定就不在。如果布隆过滤器说在,有一定可能性它在说谎

  1. 比较热门的场景就是:解决Redis缓存穿透问题

缓存穿透: 指用户的请求去查询缓存和数据库中都不存在的数据,可用户还是源源不断的发起请求,导致每次请求都会打到数据库上,从而压垮数据库

  1. 邮件过滤,使用布隆过滤器来做邮件黑名单过滤,还有重复推荐内容过滤,网址过滤, web请求访问拦截器,等等
  2. 许多数据库内置布隆过滤器,用于判断数据是否存在,可以减少数据库很多不必要的磁盘IO操作

简单模拟布隆过滤器

我们来看一个例子:

public class MyBloomFilter {

    /**
     * 一个长度为10 亿的比特位
     */
    private static final int DEFAULT_SIZE = 256 << 22;

    /**
     * 为了降低错误率,使用加法hash算法,所以定义一个8个元素的质数数组
     */
    private static final int[] seeds = {3, 5, 7, 11, 13, 31, 37, 61};

    /**
     * 相当于构建 8 个不同的hash算法
     */
    private static HashFunction[] functions = new HashFunction[seeds.length];

    /**
     * 初始化布隆过滤器的 bitmap
     */
    private static BitSet bitset = new BitSet(DEFAULT_SIZE);

    /**
     * 添加数据
     *
     * @param value 需要加入的值
     */
    public static void add(String value) {
        if (value != null) {
            for (HashFunction f : functions) {
                //计算 hash 值并修改 bitmap 中相应位置为 true
                bitset.set(f.hash(value), true);
            }
        }
    }

    /**
     * 判断相应元素是否存在
     * @param value 需要判断的元素
     * @return 结果
     */
    public static boolean contains(String value) {
        if (value == null) {
            return false;
        }
        boolean ret = true;
        for (HashFunction f : functions) {
            ret = bitset.get(f.hash(value));
            //一个 hash 函数返回 false 则跳出循环
            if (!ret) {
                break;
            }
        }
        return ret;
    }

    /**
     * 模拟用户在不在线。。。
     */
    public static void main(String[] args) {

        for (int i = 0; i < seeds.length; i++) {
            functions[i] = new HashFunction(DEFAULT_SIZE, seeds[i]);
        }

        // 添加1亿数据
        for (int i = 0; i < 100000000; i++) {
            add(String.valueOf(i));
        }
        String id = "123456789";
        add(id);

        System.out.println(contains(id));   //结果: true
        System.out.println("" + contains("234567890"));  //结果: false
    }
}

class HashFunction {

    private int size;
    private int seed;

    public HashFunction(int size, int seed) {
        this.size = size;
        this.seed = seed;
    }

    public int hash(String value) {
        int result = 0;
        int len = value.length();
        for (int i = 0; i < len; i++) {
            result = seed * result + value.charAt(i);
        }
        int r = (size - 1) & result;
        return (size - 1) & result;
    }
}

我们平时学习的时候可以去实现一下算法,但实际开发过程中,一般不推荐重复造轮子,简单的实现布隆过滤器, 我们一般可以用google.guava

Guava布隆过滤器

首先引入依赖:

<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>28.0-jre</version>
</dependency>

举个例子:

// 创建布隆过滤器对象,预计包含的数据量:2000个,和允许的误差值0.01
BloomFilter<Integer> filter = BloomFilter.create(
        Funnels.integerFunnel(),
        2000,
        0.01);

System.out.println(filter.mightContain(10));// 判断指定元素是否存在
System.out.println(filter.mightContain(20));
filter.put(10);// 将元素添加进布隆过滤器
filter.put(20);
System.out.println(filter.mightContain(10));// 判断指定元素是否存在
System.out.println(filter.mightContain(20));

其中:当mightContain()方法返回_true_时,我们可以大概率确定该元素在过滤器中,但当过滤器返回_false_时,我们可以100%确定该元素不存在于过滤器中。
布隆过滤器的 允许的误差值 越小,需要的存储空间就越大,对于不需要过于精确的场景,允许的误差值 设置稍大一点也可以。
Guava 提供的布隆过滤器的实现还是很不错的,但是随着微服务、分布式的不断发展,对于微服务多实例的场景下就不太适用了,只适合单机,解决方案是:一般是借助Redis中的布隆过滤器

Redis布隆过滤器

Redis 4.0 的时候官方提供了插件机制,布隆过滤器正式登场。以下网站可以下载官方提供的已经编译好的可拓展模块。
https://redis.com/redis-enterprise-software/download-center/modules

这边使用docker安装,自己挑选合适的镜像

~ docker pull redislabs/rebloom:latest
~ docker run -p 6379:6379 --name redis-bloom redislabs/rebloom:latest
~ docker exec -it redis-bloom bash 
root@113d012d35:/data# redis-cli
127.0.0.1:6379> 

进入容器内部后,常用的命令:

//-------------------------常用命令
BF.ADD --添加一个元素到布隆过滤器
BF.EXISTS --判断元素是否在布隆过滤器
BF.MADD --添加多个元素到布隆过滤器
BF.MEXISTS --判断多个元素是否在布隆过滤器

//-------------------------具体操作

127.0.0.1:6379> BF.ADD myFilter hello
(integer) 1
127.0.0.1:6379> BF.ADD myFilter people
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter hello
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter people
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter github
(integer) 0

布谷鸟过滤器

为了解决布隆过滤器不能删除元素的问题,布谷鸟过滤器应运而生。论文《Cuckoo Filter:Better Than Bloom》作者将布谷鸟过滤器和布隆过滤器进行了深入的对比。但是其删除并不完美,存在误删的概率,还存在插入复杂度比较高等问题。由于使用较少,本文就不过多介绍了,感兴趣的自行了解文章

参考资料:
https://www.cnblogs.com/feily/articles/14048396.html
https://www.cnblogs.com/liyulong1982/p/6013002.html


本篇文章到这里就结束啦,很感谢你能看到最后,如果觉得文章对你有帮助,别忘记关注我!更多精彩的文章

标签:面试题,hash,元素,布隆,6379,BF,过滤器
From: https://www.cnblogs.com/xiaoniuhululu/p/16736861.html

相关文章

  • 前端基础面试题
    1.前端如何进行性能优化?前端进行性能优化的方案很多,这里只列举部分。在实际应用中不要贪多,想着都用上,要对网站的主要用户群体进行针对性优化。降低请求量合并资源,......
  • VueJs 自定义过滤器使用总结
    在这个教程中,我们将会通过几个例子,了解和学习VueJs的过滤器。我们参考了一些比较完善的过滤器,比如orderBy和filterBy。而且我们可以链式调用过滤器,一个接一个过滤。因此,我......
  • 基础面试题
    1.赋值x=x+1print(x)"""A报错B10C11D不知道"""2.交叉赋值m,n=n,mprint(m,n)#9991003.解压赋值name_list=['jason','kevin','tony',......
  • 代码随想录day4 ● 24. 两两交换链表中的节点 ● 19.删除链表的倒数第N个节点 ●
    24.两两交换链表中的节点   1classSolution{2public:3ListNode*swapPairs(ListNode*head){4//创建虚拟头结点5ListNode......
  • 软件测试常考面试题-软件测试面试宝典(一篇足矣)
    问:软件测试的原则?答:1.所有测试的标准都是建立在用户需求之上2.始终保持“质量第一”的觉悟,当时间和质量冲突时,时间要服从质量3.需求阶段应定义清楚产品的质量标准4.软......
  • 一份react面试题总结
    React中constructor和getInitialState的区别?两者都是用来初始化state的。前者是ES6中的语法,后者是ES5中的语法,新版本的React中已经废弃了该方法。getInitialState是ES5......
  • 见微知著,从两道有意思的 CSS 面试题,考察你的基础
    今天在论坛,有看到这样一道非常有意思的题目,简单的代码如下:<div><pid="a">FirstParagraph</p></div>样式如下:p#a{color:green;}div::first-line{......
  • 面试题 01.02. 判定是否互为字符重排
    面试题01.02.判定是否互为字符重排给定两个字符串s1和s2,请编写一个程序,确定其中一个字符串的字符重新排列后,能否变成另一个字符串。示例1:输入:s1="abc",s......
  • 面试题
    Redis用过Redis吗,它使用在哪些地方(使用场景)?(阿里一面)为什么用Redis做排行榜?(阿里一面)如何保持Redis和MySQL数据一致?(阿里一面)......
  • 【面试题】Vue2动态添加路由 router.addRoute()
    Vue2动态添加路由点击打开视频讲解更加详细场景:一般结合VueX和localstorage一起使用router.addRoutesvue-router4后已废弃:使用router.addRoute()代替。vue-router......