首页 > 其他分享 >tcp_bbr 代码分析

tcp_bbr 代码分析

时间:2023-06-27 20:33:43浏览次数:34  
标签:struct 代码 tcp sk rtt bw cwnd bbr

 brr 算法流程:

bbr算是一个完全独立的拥塞算法,具有自己的拥塞状态机.tcp_cong_control函数已经被bbr_main函数接管了

 

static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
                 int flag, const struct rate_sample *rs)
{
    const struct inet_connection_sock *icsk = inet_csk(sk);

    if (icsk->icsk_ca_ops->cong_control) {//bbr算法实现了cong_control回调函数
        icsk->icsk_ca_ops->cong_control(sk, rs);
        return;
    }

----------------------
}

 

static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
    .flags = TCP_CONG_NON_RESTRICTED,
    .name = "bbr",
    .owner = THIS_MODULE,
    .init = bbr_init,
    .cong_control = bbr_main,
    .sndbuf_expand = bbr_sndbuf_expand,
    .undo_cwnd = bbr_undo_cwnd,
    .cwnd_event = bbr_cwnd_event,
    .ssthresh = bbr_ssthresh,
    .min_tso_segs = bbr_min_tso_segs,
    .get_info = bbr_get_info,
    .set_state = bbr_set_state,
};

 

 

/* Bottleneck Bandwidth and RTT (BBR) congestion control
 *
 * BBR congestion control computes the sending rate based on the delivery
 * rate (throughput) estimated from ACKs. In a nutshell:
 *
 *   On each ACK, update our model of the network path:
 *      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
 *      min_rtt = windowed_min(rtt, 10 seconds)
 *   pacing_rate = pacing_gain * bottleneck_bandwidth
 *   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
 *
 * The core algorithm does not react directly to packet losses or delays,
 * although BBR may adjust the size of next send per ACK when loss is
 * observed, or adjust the sending rate if it estimates there is a
 * traffic policer, in order to keep the drop rate reasonable.
 *
 * Here is a state transition diagram for BBR:
 *
 *             |
 *             V
 *    +---> STARTUP  ----+
 *    |        |         |
 *    |        V         |
 *    |      DRAIN   ----+
 *    |        |         |
 *    |        V         |
 *    +---> PROBE_BW ----+
 *    |      ^    |      |
 *    |      |    |      |
 *    |      +----+      |
 *    |                  |
 *    +---- PROBE_RTT <--+
 *
 * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
 * When it estimates the pipe is full, it enters DRAIN to drain the queue.
 * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
 * A long-lived BBR flow spends the vast majority of its time remaining
 * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
 * in a fair manner, with a small, bounded queue. *If* a flow has been
 * continuously sending for the entire min_rtt window, and hasn't seen an RTT
 * sample that matches or decreases its min_rtt estimate for 10 seconds, then
 * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
 * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
 * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
 * otherwise we enter STARTUP to try to fill the pipe.
 *
 * BBR is described in detail in:
 *   "BBR: Congestion-Based Congestion Control",
 *   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
 *   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
 *
 * There is a public e-mail list for discussing BBR development and testing:
 *   https://groups.google.com/forum/#!forum/bbr-dev
 *
 * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
 * otherwise TCP stack falls back to an internal pacing using one high
 * resolution timer per TCP socket and may use more resources.
 */
#include <linux/btf.h>
#include <linux/btf_ids.h>
#include <linux/module.h>
#include <net/tcp.h>
#include <linux/inet_diag.h>
#include <linux/inet.h>
#include <linux/random.h>
#include <linux/win_minmax.h>

/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
 * Since the minimum window is >=4 packets, the lower bound isn't
 * an issue. The upper bound isn't an issue with existing technologies.
 */
#define BW_SCALE 24
#define BW_UNIT (1 << BW_SCALE)

#define BBR_SCALE 8
/* 带宽和延迟的值从实际的微秒或字节单位缩放为一个固定的精度scaling factor for fractions in BBR (e.g. gains) 
The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.*/
#define BBR_UNIT (1 << BBR_SCALE)

/* BBR has the following modes for deciding how fast to send: */
enum bbr_mode {
    BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
    BBR_DRAIN, /* drain any queue created during startup */
    BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
    BBR_PROBE_RTT, /* cut inflight to min to probe min_rtt */
};

/* BBR congestion control block */
struct bbr {
    u32 min_rtt_us; /* min RTT in min_rtt_win_sec window 在 min_rtt_win_sec 窗口内观察到的最小往返时延(RTT)*/
    u32 min_rtt_stamp; /* timestamp of min_rtt_us观察到最小RTT的时间戳 */
    u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode BBR_PROBE_RTT模式结束的时间*/
    struct minmax bw; /* Max recent delivery rate in pkts/uS << 24
     用于跟踪最近的传输速率(以每微秒的数据包数为单位)的最大值*/
    u32 rtt_cnt; /* count of packet-timed rounds elapsed 已经经历的基于数据包计时的轮数*/
    u32 next_rtt_delivered; /* scb->tx.delivered at end of round 本轮结束时scb->tx.delivered的值*/
    u64 cycle_mstamp; /* time of this cycle phase start 当前周期阶段开始的时间戳*/
    u32 mode : 3, /* current bbr_mode in state machine */
        prev_ca_state : 3, /* CA state on previous ACK 上一个ACK时的拥塞避免(CA)状态*/
        packet_conservation : 1, /* use packet conservation? 是否使用数据包保护*/
        round_start : 1, /* start of packet-timed tx->ack round? 数据包计时的传输确认(tx->ack)轮次的开始*/
        idle_restart : 1, /* restarting after idle?是否在空闲期后重新开始 */
        probe_rtt_round_done : 1, /* a BBR_PROBE_RTT round at 4 pkts? 是否完成了一个包含4个数据包的BBR_PROBE_RTT轮次*/
        unused : 13,
        lt_is_sampling : 1, /* taking long-term ("LT") samples now? */
        lt_rtt_cnt : 7, /* round trips in long-term interval 长期间隔内的往返轮数*/
        lt_use_bw : 1; /* use lt_bw as our bw estimate?是否使用lt_bw作为带宽估计值 */
    //在BBR算法中,通过采集和跟踪一段时间内的传输速率数据,可以对网络链路的带宽进行估计。lt_bw就是这个长期间隔内的估计传输速率。
    u32 lt_bw; /* LT est delivery rate in pkts/uS << 24  长期间隔内的估计传输速率*/
    u32 lt_last_delivered; /* LT intvl start: tp->delivered长期间隔的开始:tp->delivered的值*/
    u32 lt_last_stamp; /* LT intvl start: tp->delivered_mstamp 长期间隔的开始:tp->delivered_mstamp的值*/
    u32 lt_last_lost; /* LT intvl start: tp->lost 长期间隔的开始:tp->lost的值*/
    u32 pacing_gain : 10, /* current gain for setting pacing rate 调整速率的当前增益 */
        cwnd_gain : 10, /* current gain for setting cwnd */
        full_bw_reached : 1, /* reached full bw in Startup? 是否在启动阶段达到了满带宽*/
        full_bw_cnt : 2, /* number of rounds without large bw gains 连续几轮没有较大带宽增益的次数*/
        cycle_idx : 3, /* current index in pacing_gain cycle array 当前在pacing_gain循环数组中的索引*/
        has_seen_rtt : 1, /* have we seen an RTT sample yet? 是否已经观察到了RTT样本*/
        unused_b : 5;
    u32 prior_cwnd; /* prior cwnd upon entering loss recovery 进入丢包恢复状态时的cwnd */
    u32 full_bw; /* recent bw, to estimate if pipe is full 用于存储最近的带宽估计*/

    /* For tracking ACK aggregation: */
    u64 ack_epoch_mstamp; /* start of ACK sampling epoch  ACK采样周期的开始时间戳*/
    u16 extra_acked
        [2]; /* max excess data ACKed in epoch 周期内最大的额外ACKed数据量 */
    u32 ack_epoch_acked : 20, /* packets (S)ACKed in sampling epoch */
        extra_acked_win_rtts : 5, /* age of extra_acked, in round trips */
        extra_acked_win_idx : 1, /* current index in extra_acked array */
        unused_c : 6;
};

#define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */

/* Window length of bw filter (in rounds): */
static const int bbr_bw_rtts = CYCLE_LEN + 2;
/* Window length of min_rtt filter (in sec): */
static const u32 bbr_min_rtt_win_sec = 10;
/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
static const u32 bbr_probe_rtt_mode_ms = 200;
/* Skip TSO below the following bandwidth (bits/sec): */
static const int bbr_min_tso_rate = 1200000;

/* Pace at ~1% below estimated bw, on average, to reduce queue at bottleneck.
 * In order to help drive the network toward lower queues and low latency while
 * maintaining high utilization, the average pacing rate aims to be slightly
 * lower than the estimated bandwidth. This is an important aspect of the
 * design.
 */
static const int bbr_pacing_margin_percent = 1;

/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
 * that will allow a smoothly increasing pacing rate that will double each RTT
 * and send the same number of packets per RTT that an un-paced, slow-starting
 * Reno or CUBIC flow would:
 */
static const int bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1;
/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
 * the queue created in BBR_STARTUP in a single round:
 */
static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
static const int bbr_cwnd_gain = BBR_UNIT * 2;
/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
static const int bbr_pacing_gain[] = {
    BBR_UNIT * 5 / 4, /* probe for more available bw */
    BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */
    BBR_UNIT,      BBR_UNIT,
    BBR_UNIT, /* cruise at 1.0*bw to utilize pipe, */
    BBR_UNIT,      BBR_UNIT,
    BBR_UNIT /* without creating excess queue... */
};
/* Randomize the starting gain cycling phase over N phases: */
static const u32 bbr_cycle_rand = 7;

/* Try to keep at least this many packets in flight, if things go smoothly. For
 * smooth functioning, a sliding window protocol ACKing every other packet
 * needs at least 4 packets in flight:
 */
static const u32 bbr_cwnd_min_target = 4;

/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
/* If bw has increased significantly (1.25x), there may be more bw available: */
static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
static const u32 bbr_full_bw_cnt = 3;

/* "long-term" ("LT") bandwidth estimator parameters... */
/* The minimum number of rounds in an LT bw sampling interval: */
static const u32 bbr_lt_intvl_min_rtts = 4;
/* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
static const u32 bbr_lt_loss_thresh = 50;
/* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
/* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
static const u32 bbr_lt_bw_diff = 4000 / 8;
/* If we estimate we're policed, use lt_bw for this many round trips: */
static const u32 bbr_lt_bw_max_rtts = 48;

/* Gain factor for adding extra_acked to target cwnd: */
static const int bbr_extra_acked_gain = BBR_UNIT;
/* Window length of extra_acked window. */
static const u32 bbr_extra_acked_win_rtts = 5;
/* Max allowed val for ack_epoch_acked, after which sampling epoch is reset */
static const u32 bbr_ack_epoch_acked_reset_thresh = 1U << 20;
/* Time period for clamping cwnd increment due to ack aggregation */
static const u32 bbr_extra_acked_max_us = 100 * 1000;

static void bbr_check_probe_rtt_done(struct sock *sk);

/* Do we estimate that STARTUP filled the pipe? */
static bool bbr_full_bw_reached(const struct sock *sk)
{
    const struct bbr *bbr = inet_csk_ca(sk);

    return bbr->full_bw_reached;
}

/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
static u32 bbr_max_bw(const struct sock *sk)
{
    struct bbr *bbr = inet_csk_ca(sk);

    return minmax_get(&bbr->bw);
}

/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
static u32 bbr_bw(const struct sock *sk)
{
    struct bbr *bbr = inet_csk_ca(sk);
    return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
}

/* Return maximum extra acked in past k-2k round trips,
 * where k = bbr_extra_acked_win_rtts.
 */
static u16 bbr_extra_acked(const struct sock *sk)
{
    struct bbr *bbr = inet_csk_ca(sk);

    return max(bbr->extra_acked[0], bbr->extra_acked[1]);
}

/* Return rate in bytes per second, optionally with a gain.
 * The order here is chosen carefully to avoid overflow of u64. This should
 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
 */
static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
{
    unsigned int mss = tcp_sk(sk)->mss_cache;

    rate *= mss; //mss大小,byte
    rate *= gain;
    rate >>= BBR_SCALE; //右移8位,即除以2^8  256
    //通过调整 "bbr_pacing_margin_percent" 的值,可以控制发送方在计算发送速率时预留的余地大小
    rate *= USEC_PER_SEC / 100 * (100 - bbr_pacing_margin_percent);
    return rate >> BW_SCALE; //右移24位
}

/* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
static unsigned long bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
{
    u64 rate = bw;

    rate = bbr_rate_bytes_per_sec(sk, rate, gain);
    rate = min_t(u64, rate, sk->sk_max_pacing_rate);
    return rate;
}

/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);
    u64 bw;
    u32 rtt_us;

    if (tp->srtt_us) { /* any RTT sample yet? */
        rtt_us = max(tp->srtt_us >> 3, 1U);
        bbr->has_seen_rtt = 1;
    } else { /* no RTT sample yet */
        rtt_us = USEC_PER_MSEC; /* use nominal default RTT */
    }
    bw = (u64)tcp_snd_cwnd(tp) * BW_UNIT;
    do_div(bw, rtt_us);
    sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
}

/* Pace using current bw estimate and a gain factor. */
static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);
    //通过bw算出pacing rate
    unsigned long rate = bbr_bw_to_pacing_rate(sk, bw, gain);
    //如果还没采样到rtt,并且之前有测过得到平滑的rtt,则尝试通过平滑的rtt来算pacing_rate,并更新到sk->sk_pacing_rate中
    if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
        bbr_init_pacing_rate_from_rtt(sk);
    if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
        sk->sk_pacing_rate = rate; //更新pacing rate
}

/* override sysctl_tcp_min_tso_segs */
__bpf_kfunc static u32 bbr_min_tso_segs(struct sock *sk)
{
    return sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
}

static u32 bbr_tso_segs_goal(struct sock *sk)
{
    struct tcp_sock *tp = tcp_sk(sk);
    u32 segs, bytes;

    /* Sort of tcp_tso_autosize() but ignoring
     * driver provided sk_gso_max_size.
     */
    bytes = min_t(unsigned long,
              sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
              GSO_LEGACY_MAX_SIZE - 1 - MAX_TCP_HEADER);
    segs = max_t(u32, bytes / tp->mss_cache, bbr_min_tso_segs(sk));

    return min(segs, 0x7FU);
}

/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
static void bbr_save_cwnd(struct sock *sk)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);

    if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
        bbr->prior_cwnd =
            tcp_snd_cwnd(tp); /* this cwnd is good enough */
    else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
        bbr->prior_cwnd = max(bbr->prior_cwnd, tcp_snd_cwnd(tp));
}

__bpf_kfunc static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);

    if (event == CA_EVENT_TX_START && tp->app_limited) {
        bbr->idle_restart = 1;
        bbr->ack_epoch_mstamp = tp->tcp_mstamp;
        bbr->ack_epoch_acked = 0;
        /* Avoid pointless buffer overflows: pace at est. bw if we don't
         * need more speed (we're restarting from idle and app-limited).
         */
        if (bbr->mode == BBR_PROBE_BW)
            bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
        else if (bbr->mode == BBR_PROBE_RTT)
            bbr_check_probe_rtt_done(sk);
    }
}

/* Calculate bdp based on min RTT and the estimated bottleneck bandwidth:
 *
 * bdp = ceil(bw * min_rtt * gain)
 *
 * The key factor, gain, controls the amount of queue. While a small gain
 * builds a smaller queue, it becomes more vulnerable to noise in RTT
 * measurements (e.g., delayed ACKs or other ACK compression effects). This
 * noise may cause BBR to under-estimate the rate.
 */
static u32 bbr_bdp(struct sock *sk, u32 bw, int gain)
{
    struct bbr *bbr = inet_csk_ca(sk);
    u32 bdp;
    u64 w;

    /* If we've never had a valid RTT sample, cap cwnd at the initial
     * default. This should only happen when the connection is not using TCP
     * timestamps and has retransmitted all of the SYN/SYNACK/data packets
     * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
     * case we need to slow-start up toward something safe: TCP_INIT_CWND.
     */
    if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */
        return TCP_INIT_CWND; /* be safe: cap at default initial cwnd*/

    w = (u64)bw * bbr->min_rtt_us;

    /* Apply a gain to the given value, remove the BW_SCALE shift, and
     * round the value up to avoid a negative feedback loop.
     */
    bdp = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;

    return bdp;
}

/* To achieve full performance in high-speed paths, we budget enough cwnd to
 * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
 *   - one skb in sending host Qdisc,在发送端主机的 Qdisc(队列调度器)中,有一个 skb 在等待发送
 *   - one skb in sending host TSO/GSO engine在发送端主机的 TSO/GSO(TCP Segmentation Offload/Generic Segmentation Offload)引擎中,
 * 有一个 skb 正在被分段为多个网络包
 *   - one skb being received by receiver host LRO/GRO/delayed-ACK engine
 * 在接收端主机的 LRO/GRO(Large Receive Offload/Generic Receive Offload)或者延迟确认引擎中,有一个 skb 正在被接收和处理
 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
 * which allows 2 outstanding 2-packet sequences, to try to keep pipe
 * full even with ACK-every-other-packet delayed ACKs.
 */
static u32 bbr_quantization_budget(struct sock *sk, u32 cwnd)
{
    struct bbr *bbr = inet_csk_ca(sk);

    /* Allow enough full-sized skbs in flight to utilize end systems. */
    cwnd += 3 * bbr_tso_segs_goal(sk);

    /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
    cwnd = (cwnd + 1) & ~1U;

    /* Ensure gain cycling gets inflight above BDP even for small BDPs. */
    if (bbr->mode == BBR_PROBE_BW && bbr->cycle_idx == 0)
        cwnd += 2;

    return cwnd;
}

/* Find inflight based on min RTT and the estimated bottleneck bandwidth. */
static u32 bbr_inflight(struct sock *sk, u32 bw, int gain)
{
    u32 inflight;

    inflight = bbr_bdp(sk, bw, gain); //通过rtt和bw算出bdp
    //在一些高速场景(tso)下需要补偿一点
    inflight = bbr_quantization_budget(sk, inflight);

    return inflight;
}

/* With pacing at lower layers, there's often less data "in the network" than
 * "in flight". With TSQ and departure time pacing at lower layers (e.g. fq),
 * we often have several skbs queued in the pacing layer with a pre-scheduled
 * earliest departure time (EDT). BBR adapts its pacing rate based on the
 * inflight level that it estimates has already been "baked in" by previous
 * departure time decisions. We calculate a rough estimate of the number of our
 * packets that might be in the network at the earliest departure time for the
 * next skb scheduled:
 *   in_network_at_edt = inflight_at_edt - (EDT - now) * bw
 * If we're increasing inflight, then we want to know if the transmit of the
 * EDT skb will push inflight above the target, so inflight_at_edt includes
 * bbr_tso_segs_goal() from the skb departing at EDT. If decreasing inflight,
 * then estimate if inflight will sink too low just before the EDT transmit.
 */
static u32 bbr_packets_in_net_at_edt(struct sock *sk, u32 inflight_now)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);
    u64 now_ns, edt_ns, interval_us;
    u32 interval_delivered, inflight_at_edt;

    now_ns = tp->tcp_clock_cache;
    edt_ns = max(tp->tcp_wstamp_ns, now_ns);
    interval_us = div_u64(edt_ns - now_ns, NSEC_PER_USEC);
    interval_delivered = (u64)bbr_bw(sk) * interval_us >> BW_SCALE;
    inflight_at_edt = inflight_now;
    if (bbr->pacing_gain > BBR_UNIT) /* increasing inflight */
        inflight_at_edt += bbr_tso_segs_goal(sk); /* include EDT skb */
    if (interval_delivered >= inflight_at_edt)
        return 0;
    return inflight_at_edt - interval_delivered;
}

/* Find the cwnd increment based on estimate of ack aggregation */
static u32 bbr_ack_aggregation_cwnd(struct sock *sk)
{
    u32 max_aggr_cwnd, aggr_cwnd = 0;

    if (bbr_extra_acked_gain && bbr_full_bw_reached(sk)) {
        max_aggr_cwnd =
            ((u64)bbr_bw(sk) * bbr_extra_acked_max_us) / BW_UNIT;
        aggr_cwnd = (bbr_extra_acked_gain * bbr_extra_acked(sk)) >>
                BBR_SCALE;
        aggr_cwnd = min(aggr_cwnd, max_aggr_cwnd);
    }

    return aggr_cwnd;
}

/* An optimization in BBR to reduce losses: On the first round of recovery, we
 * follow the packet conservation principle: send P packets per P packets acked.
 * After that, we slow-start and send at most 2*P packets per P packets acked.
 * After recovery finishes, or upon undo, we restore the cwnd we had when
 * recovery started (capped by the target cwnd based on estimated BDP).
 *
 * TODO(ycheng/ncardwell): implement a rate-based approach.
 */
static bool bbr_set_cwnd_to_recover_or_restore(struct sock *sk,
                           const struct rate_sample *rs,
                           u32 acked, u32 *new_cwnd)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);
    u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
    u32 cwnd = tcp_snd_cwnd(tp);

    /* An ACK for P pkts should release at most 2*P packets. We do this
     * in two steps. First, here we deduct the number of lost packets.
     * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
     */
    if (rs->losses > 0)
        cwnd = max_t(s32, cwnd - rs->losses, 1);

    if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
        /* Starting 1st round of Recovery, so do packet conservation. */
        bbr->packet_conservation = 1;
        bbr->next_rtt_delivered = tp->delivered; /* start round now */
        /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
        cwnd = tcp_packets_in_flight(tp) + acked;
    } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
        /* Exiting loss recovery; restore cwnd saved before recovery. */
        cwnd = max(cwnd, bbr->prior_cwnd);
        bbr->packet_conservation = 0;
    }
    bbr->prev_ca_state = state;

    if (bbr->packet_conservation) {
        *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
        return true; /* yes, using packet conservation */
    }
    *new_cwnd = cwnd;
    return false;
}

/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
 * has drawn us down below target), or snap down to target if we're above it.
 */
static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
             u32 acked, u32 bw, int gain)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);
    u32 cwnd = tcp_snd_cwnd(tp), target_cwnd = 0;
    //若当前的ack没有acked任何包,则跳过
    if (!acked)
        goto done; /* no packet fully ACKed; just apply caps */
    //在外部拥塞控制状态为recovery或丢包等外部参数给进来判断,控制拥塞窗口大小
    if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
        goto done;
    //目标拥塞窗口大小为bdp
    target_cwnd = bbr_bdp(sk, bw, gain);

    /* Increment the cwnd to account for excess ACKed data that seems
     * due to aggregation (of data and/or ACKs) visible in the ACK stream.
     */
    //加上补偿
    target_cwnd += bbr_ack_aggregation_cwnd(sk);
    target_cwnd = bbr_quantization_budget(sk, target_cwnd);

    /* If we're below target cwnd, slow start cwnd toward target cwnd.
    若小于target,则slow start */
    if (bbr_full_bw_reached(sk)) /* only cut cwnd if we filled the pipe */
        cwnd = min(cwnd + acked, target_cwnd);
    //若当前拥塞窗口小于目标拥塞窗口或已成功传递的数量小于10,则用当前拥塞窗口+acked
    else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
        cwnd = cwnd + acked;
    cwnd = max(cwnd, bbr_cwnd_min_target); //后者为4,至少为4

done:
    tcp_snd_cwnd_set(tp,
             min(cwnd, tp->snd_cwnd_clamp)); /* apply global cap */
    if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */
        //此时在探测最小rtt,应该减小窗口值,<=4,因为要探测最小rtt,发送不能过快
        tcp_snd_cwnd_set(tp,
                 min(tcp_snd_cwnd(tp), bbr_cwnd_min_target));
}

/* End cycle phase if it's time and/or we hit the phase's in-flight target. */
static bool bbr_is_next_cycle_phase(struct sock *sk,
                    const struct rate_sample *rs)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);
    bool is_full_length =
        tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
        bbr->min_rtt_us;
    u32 inflight, bw;

    /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
     * use the pipe without increasing the queue.
     */
    if (bbr->pacing_gain == BBR_UNIT)
        return is_full_length; /* just use wall clock time */

    inflight = bbr_packets_in_net_at_edt(sk, rs->prior_in_flight);
    bw = bbr_max_bw(sk);

    /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
     * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
     * small (e.g. on a LAN). We do not persist if packets are lost, since
     * a path with small buffers may not hold that much.
     */
    if (bbr->pacing_gain > BBR_UNIT)
        return is_full_length &&
               (rs->losses || /* perhaps pacing_gain*BDP won't fit */
            inflight >= bbr_inflight(sk, bw, bbr->pacing_gain));

    /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
     * probing didn't find more bw. If inflight falls to match BDP then we
     * estimate queue is drained; persisting would underutilize the pipe.
     */
    return is_full_length || inflight <= bbr_inflight(sk, bw, BBR_UNIT);
}

static void bbr_advance_cycle_phase(struct sock *sk)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);
    //下一阶段增益表对应index
    bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
    bbr->cycle_mstamp = tp->delivered_mstamp; //当前阶段开始的时间戳
}

/* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
static void bbr_update_cycle_phase(struct sock *sk,
                   const struct rate_sample *rs)
{
    struct bbr *bbr = inet_csk_ca(sk);
    //当前处于 ProbeBW状态时且到时间切换到下个增益,会去更新cycle_idx。
    if (bbr->mode == BBR_PROBE_BW && bbr_is_next_cycle_phase(sk, rs))
        bbr_advance_cycle_phase(sk);
}

static void bbr_reset_startup_mode(struct sock *sk)
{
    struct bbr *bbr = inet_csk_ca(sk);

    bbr->mode = BBR_STARTUP;
}

static void bbr_reset_probe_bw_mode(struct sock *sk)
{
    struct bbr *bbr = inet_csk_ca(sk);

    bbr->mode = BBR_PROBE_BW;
    bbr->cycle_idx = CYCLE_LEN - 1 - get_random_u32_below(bbr_cycle_rand);
    bbr_advance_cycle_phase(sk); /* flip to next phase of gain cycle */
}

static void bbr_reset_mode(struct sock *sk)
{
    if (!bbr_full_bw_reached(sk))
        bbr_reset_startup_mode(sk);
    else
        bbr_reset_probe_bw_mode(sk);
}

/* Start a new long-term sampling interval. */
static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);

    bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
    bbr->lt_last_delivered = tp->delivered;
    bbr->lt_last_lost = tp->lost;
    bbr->lt_rtt_cnt = 0;
}

/* Completely reset long-term bandwidth sampling. */
static void bbr_reset_lt_bw_sampling(struct sock *sk)
{
    struct bbr *bbr = inet_csk_ca(sk);

    bbr->lt_bw = 0;
    bbr->lt_use_bw = 0;
    bbr->lt_is_sampling = false;
    bbr_reset_lt_bw_sampling_interval(sk);
}

/* Long-term bw sampling interval is done. Estimate whether we're policed. */
static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
{
    struct bbr *bbr = inet_csk_ca(sk);
    u32 diff;

    if (bbr->lt_bw) { /* do we have bw from a previous interval? */
        /* Is new bw close to the lt_bw from the previous interval? */
        diff = abs(bw - bbr->lt_bw);
        if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
            (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
             bbr_lt_bw_diff)) {
            /* All criteria are met; estimate we're policed. */
            bbr->lt_bw = (bw + bbr->lt_bw) >> 1; /* avg 2 intvls */
            bbr->lt_use_bw = 1;
            bbr->pacing_gain = BBR_UNIT; /* try to avoid drops */
            bbr->lt_rtt_cnt = 0;
            return;
        }
    }
    bbr->lt_bw = bw;
    bbr_reset_lt_bw_sampling_interval(sk);
}

/* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
 * explicitly models their policed rate, to reduce unnecessary losses. We
 * estimate that we're policed if we see 2 consecutive sampling intervals with
 * consistent throughput and high packet loss. If we think we're being policed,
 * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
 */
static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);
    u32 lost, delivered;
    u64 bw;
    u32 t;

    if (bbr->lt_use_bw) { /* already using long-term rate, lt_bw? */
        if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
            ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
            bbr_reset_lt_bw_sampling(sk); /* stop using lt_bw */
            bbr_reset_probe_bw_mode(sk); /* restart gain cycling */
        }
        return;
    }

    /* Wait for the first loss before sampling, to let the policer exhaust
     * its tokens and estimate the steady-state rate allowed by the policer.
     * Starting samples earlier includes bursts that over-estimate the bw.
     */
    if (!bbr->lt_is_sampling) {
        if (!rs->losses)
            return;
        bbr_reset_lt_bw_sampling_interval(sk);
        bbr->lt_is_sampling = true;
    }

    /* To avoid underestimates, reset sampling if we run out of data. */
    if (rs->is_app_limited) {
        bbr_reset_lt_bw_sampling(sk);
        return;
    }

    if (bbr->round_start)
        bbr->lt_rtt_cnt++; /* count round trips in this interval */
    if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
        return; /* sampling interval needs to be longer */
    if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
        bbr_reset_lt_bw_sampling(sk); /* interval is too long */
        return;
    }

    /* End sampling interval when a packet is lost, so we estimate the
     * policer tokens were exhausted. Stopping the sampling before the
     * tokens are exhausted under-estimates the policed rate.
     */
    if (!rs->losses)
        return;

    /* Calculate packets lost and delivered in sampling interval. */
    lost = tp->lost - bbr->lt_last_lost;
    delivered = tp->delivered - bbr->lt_last_delivered;
    /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
    if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
        return;

    /* Find average delivery rate in this sampling interval. */
    t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
    if ((s32)t < 1)
        return; /* interval is less than one ms, so wait */
    /* Check if can multiply without overflow */
    if (t >= ~0U / USEC_PER_MSEC) {
        bbr_reset_lt_bw_sampling(sk); /* interval too long; reset */
        return;
    }
    t *= USEC_PER_MSEC;
    bw = (u64)delivered * BW_UNIT;
    do_div(bw, t);
    bbr_lt_bw_interval_done(sk, bw);
}

/* Estimate the bandwidth based on how fast packets are delivered */
static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);
    u64 bw;

    bbr->round_start = 0;
    if (rs->delivered < 0 || rs->interval_us <= 0)
        return; /* Not a valid observation */

    /* See if we've reached the next RTT 
    判断是否达到下一个RTT */
    if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
        bbr->next_rtt_delivered = tp->delivered;
        bbr->rtt_cnt++;
        bbr->round_start = 1;
        bbr->packet_conservation = 0;
    }

    bbr_lt_bw_sampling(sk, rs);

    /* Divide delivered by the interval to find a (lower bound) bottleneck
     * bandwidth sample. Delivered is in packets and interval_us in uS and
     * ratio will be <<1 for most connections. So delivered is first scaled.
     * 将rs->delivered乘以BW_UNIT,然后除以rs->interval_us,计算出一个(下界)瓶颈带宽样本
     * 前面是算出每us的包数,这里乘以一个系数2^24,后面要除去
     * Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth  pkt/uSec 单位中速率的比例因子,以避免带宽截断估计。
     * //即 1500*8 * 1000000(1s=1000000us) / 2^24 ~= 715bps,
     * 1500为一个mtu,这里算的是一个速率单位,即通过每us的包数,转换为每s的bit数 再/ 2^24
 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.//若0.06表示715,则可以存储更多值
 * Since the minimum window is >=4 packets, the lower bound isn't
 * an issue. The upper bound isn't an issue with existing technologies.//因为最小窗口>=4,所以下限不是问题。
     */
    bw = div64_long((u64)rs->delivered * BW_UNIT, rs->interval_us);

    /* If this sample is application-limited, it is likely to have a very
     * low delivered count that represents application behavior rather than
     * the available network rate. Such a sample could drag down estimated
     * bw, causing needless slow-down. Thus, to continue to send at the
     * last measured network rate, we filter out app-limited samples unless
     * they describe the path bw at least as well as our bw model.
     *
     * So the goal during app-limited phase is to proceed with the best
     * network rate no matter how long. We automatically leave this
     * phase when app writes faster than the network can deliver :)
     * 如果样本不是应用程序限制的,或者样本的带宽值大于等于当前的最大带宽(由bbr_max_bw函数返回),
     * 则将该样本纳入最大带宽滤波器中,使用minmax_running_max函数更新最大带宽的值。
     */
    if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
        /* Incorporate new sample into our max bw filter. */
        minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
    }
}

/* Estimates the windowed max degree of ack aggregation.-->估计 ack 聚合的窗口最大程度
 * This is used to provision extra in-flight data to keep sending during inter-ACK silences.
 *
 * Degree of ack aggregation is estimated as extra data acked beyond expected.
 *
 * max_extra_acked = "maximum recent excess data ACKed beyond max_bw * interval"
 * cwnd += max_extra_acked
 *
 * Max extra_acked is clamped by cwnd and bw * bbr_extra_acked_max_us (100 ms).
 * Max filter is an approximate sliding window of 5-10 (packet timed) round
 * trips.
 * 某种情况下会有大量ack延迟到达,而在延迟之前,cwnd被递减
发送减缓,等到这些突发的ack聚集到达时,需要快速恢复,这里会出现一个
带宽缺口,所以bbr从cwnd递减时机 和快速恢复两点,对带宽进行补偿
rfc: 4.5.5. BBR.extra_acked
 */
static void bbr_update_ack_aggregation(struct sock *sk,
                       const struct rate_sample *rs)
{
    u32 epoch_us, expected_acked, extra_acked;
    struct bbr *bbr = inet_csk_ca(sk);
    struct tcp_sock *tp = tcp_sk(sk);

    if (!bbr_extra_acked_gain || rs->acked_sacked <= 0 ||
        rs->delivered < 0 || rs->interval_us <= 0)
        return;

    if (bbr->round_start) { //rtt周期计算最开始
        bbr->extra_acked_win_rtts =
            min(0x1F, bbr->extra_acked_win_rtts + 1);
        if (bbr->extra_acked_win_rtts >= bbr_extra_acked_win_rtts) {
            bbr->extra_acked_win_rtts = 0;
            bbr->extra_acked_win_idx =
                bbr->extra_acked_win_idx ? 0 : 1;
            bbr->extra_acked[bbr->extra_acked_win_idx] = 0;
        }
    }

    /* Compute how many packets we expected to be delivered over epoch. */
    epoch_us =
        tcp_stamp_us_delta(tp->delivered_mstamp, bbr->ack_epoch_mstamp);
    expected_acked = ((u64)bbr_bw(sk) * epoch_us) /
             BW_UNIT; //根据发送得到预期接收的ack

    /* Reset the aggregation epoch if ACK rate is below expected rate or
     * significantly large no. of ack received since epoch (potentially
     * quite old epoch).
     *///ack没超过预期,置位0
    if (bbr->ack_epoch_acked <= expected_acked ||
        (bbr->ack_epoch_acked + rs->acked_sacked >=
         bbr_ack_epoch_acked_reset_thresh)) {
        bbr->ack_epoch_acked = 0;
        bbr->ack_epoch_mstamp = tp->delivered_mstamp;
        expected_acked = 0;
    }

    /* Compute excess data delivered, beyond what was expected. */
    bbr->ack_epoch_acked =
        min_t(u32, 0xFFFFF, bbr->ack_epoch_acked + rs->acked_sacked);
    extra_acked =
        bbr->ack_epoch_acked - expected_acked; //算出超过预期的ack数量
    extra_acked =
        min(extra_acked, tcp_snd_cwnd(tp)); //和拥塞窗口比较取最小值
    if (extra_acked > bbr->extra_acked[bbr->extra_acked_win_idx])
        bbr->extra_acked[bbr->extra_acked_win_idx] = extra_acked;
    //这个在后面算cwnd时,会用到:    target_cwnd += bbr_ack_aggregation_cwnd(sk);
}

/* Estimate when the pipe is full, using the change in delivery rate: BBR
 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
 * higher rwin, 3: we get higher delivery rate samples. Or transient
 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
 * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
 * 使用delivery rate的变化来估计管道何时充满
 * 如果在 bbr_full_bw_cnt (3次) 非应用程序限制轮次之后估计的 bw 没有改变至少 bbr_full_bw_thresh (25%),
则估计 STARTUP 填充了管道。 为什么要进行 3 轮:
1:rwin 自动调整使 rwin 增长,
2:我们填充更高的 rwin,
3:我们获得更高的delivery rate样本。 或者瞬态交叉流量或无线电噪声可以消失。
3次相当于给恢复的机会,或容错成本
 CUBIC Hystart 具有类似的设计目标,但使用延迟和 ACK 间间隔而不是带宽。
 */
static void bbr_check_full_bw_reached(struct sock *sk,
                      const struct rate_sample *rs)
{
    struct bbr *bbr = inet_csk_ca(sk);
    u32 bw_thresh;
    //如果已经达到full bw( /* reached full bw in Startup? */)
    //或者round 还没开始当前在app发送没充分利用信道带宽的情况下,直接返回
    if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
        return;
    //注意这里用1.25倍上次的最大值
    bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
    if (bbr_max_bw(sk) >=
        bw_thresh) { //max算出来的比上次的大25%,说明还在增长。
        bbr->full_bw = bbr_max_bw(sk);
        bbr->full_bw_cnt = 0;
        return;
    }
    ++bbr->full_bw_cnt; //否则累计,三次不增长则说明到最大值了。
    bbr->full_bw_reached = bbr->full_bw_cnt >=
                   bbr_full_bw_cnt; //达到三次认为是达到最大值
}

/* If pipe is probably full, drain the queue and then enter steady-state. */
static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
{
    struct bbr *bbr = inet_csk_ca(sk);
    //如果达到full bw,则进入drain
    if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
        bbr->mode = BBR_DRAIN; /* drain queue we created */
        tcp_sk(sk)->snd_ssthresh =
            bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT);
    } /* fall through to check if in-flight is already small: */
    /* from rfc:
    在 Drain 中,当传输中的数据量小于或等于估计的 BDP 时,意味着 BBR 估计队列已经完全排空,然后 BBR 退出 Drain 并进入 ProbeBW。
    为了实现这一点,在每个 ACK BBR 执行时:
     BBRCheckDrain():
       if (BBR.state == Drain and packets_in_flight <= BBRInflight(1.0))
         BBREnterProbeBW()  /* BBR estimates the queue was drained */
    * / if (bbr->mode == BBR_DRAIN &&
        bbr_packets_in_net_at_edt(sk,
                      tcp_packets_in_flight(tcp_sk(sk))) <=
            bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT))
            bbr_reset_probe_bw_mode(sk);
    /* we estimate queue is drained 满足条件进入到PROBE_BW状态*/
}

static void bbr_check_probe_rtt_done(struct sock *sk)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);

    if (!(bbr->probe_rtt_done_stamp &&
          after(tcp_jiffies32, bbr->probe_rtt_done_stamp)))
        return;

    bbr->min_rtt_stamp = tcp_jiffies32; /* wait a while until PROBE_RTT */
    tcp_snd_cwnd_set(tp, max(tcp_snd_cwnd(tp), bbr->prior_cwnd));
    //重置回startUp或Probebw状态
    bbr_reset_mode(sk);
}

/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
 * periodically drain the bottleneck queue, to converge to measure the true
 * min_rtt (unloaded propagation delay). This allows the flows to keep queues
 * small (reducing queuing delay and packet loss) and achieve fairness among
 * BBR flows.
 *
 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
 * re-enter the previous mode. BBR uses 200ms to approximately bound the
 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
 *
 * Note that flows need only pay 2% if they are busy sending over the last 10
 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
 * natural silences or low-rate periods within 10 seconds where the rate is low
 * enough for long enough to drain its queue in the bottleneck. We pick up
 * these min RTT measurements opportunistically with our min_rtt filter. :-)
 * PROBE_RTT 模式的目标是让 BBR 流协同并定期排空瓶颈队列,以收敛以测量真正的 min_rtt。
 这允许流保持较小的队列(减少排队延迟和丢包)并实现 BBR 流之间的公平。
 min_rtt 过滤器窗口为 10 秒。当 min_rtt 估计过期时,我们进入 PROBE_RTT 模式并将 cwnd 限制在 bbr_cwnd_min_target=4 个数据包
 至少 bbr_probe_rtt_mode_ms=200ms 和至少一个数据包定时后,该空中包数大小 <= 4 的往返已过去,
我们离开 PROBE_RTT 模式并重新进入先前的模式。 BBR 使用 200 毫秒将 PROBE_RTT 的 cwnd 上限的性能损失大致限制在大约 2%(200 毫秒/10 秒)。
请注意,如果流在过去 10 秒内忙于发送,则只需支付 2%。交互式应用程序(例如,Web、RPC、视频块)通常在 10 秒内具有自然静默或低速率周期,
其中速率足够低,足以耗尽瓶颈中的队列。我们使用我们的 min_rtt 过滤器机会性地获取这些最小 RTT 测量值。
 */
static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);
    bool filter_expired;

    /* Track min RTT seen in the min_rtt_win_sec filter window: bbr_min_rtt_win_sec是10s*/
    filter_expired = after(tcp_jiffies32,
                   bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
    if (rs->rtt_us >= 0 && (rs->rtt_us < bbr->min_rtt_us ||
                (filter_expired && !rs->is_ack_delayed))) {
        //更新最小rtt,rtt通过参数代入进来
        bbr->min_rtt_us = rs->rtt_us;
        bbr->min_rtt_stamp = tcp_jiffies32;
    }

    if (bbr_probe_rtt_mode_ms > 0 && filter_expired && !bbr->idle_restart &&
        bbr->mode != BBR_PROBE_RTT) {
        /* dip, drain queue 进入rtt探测阶段 */
        bbr->mode = BBR_PROBE_RTT;
        bbr_save_cwnd(sk); /* note cwnd so we can restore it */
        bbr->probe_rtt_done_stamp = 0;
    }
    //尝试退出这个状态
    if (bbr->mode == BBR_PROBE_RTT) {
        /* Ignore low rate samples during this mode. */
        tp->app_limited = (tp->delivered + tcp_packets_in_flight(tp)) ?:
                                        1;
        /* Maintain min packets in flight for max(200 ms, 1 round). */
        if (!bbr->probe_rtt_done_stamp &&
            tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
            //设置结束时间,只有这里更新,这里是200ms
            bbr->probe_rtt_done_stamp =
                tcp_jiffies32 +
                msecs_to_jiffies(bbr_probe_rtt_mode_ms);
            bbr->probe_rtt_round_done = 0;
            bbr->next_rtt_delivered = tp->delivered;
        } else if (bbr->probe_rtt_done_stamp) {
            if (bbr->round_start)
                bbr->probe_rtt_round_done = 1;
            if (bbr->probe_rtt_round_done)
                bbr_check_probe_rtt_done(sk);
        }
    }
    /* Restart after idle ends only once we process a new S/ACK for data */
    if (rs->delivered > 0)
        bbr->idle_restart = 0;
}

static void bbr_update_gains(struct sock *sk)
{
    struct bbr *bbr = inet_csk_ca(sk);

    switch (bbr->mode) {
    case BBR_STARTUP:
        bbr->pacing_gain = bbr_high_gain;
        bbr->cwnd_gain = bbr_high_gain;
        break;
    case BBR_DRAIN:
        bbr->pacing_gain = bbr_drain_gain; /* slow, to drain */
        bbr->cwnd_gain = bbr_high_gain; /* keep cwnd */
        break;
    case BBR_PROBE_BW:
        bbr->pacing_gain = (bbr->lt_use_bw ?
                        BBR_UNIT :
                        bbr_pacing_gain[bbr->cycle_idx]);
        bbr->cwnd_gain = bbr_cwnd_gain;
        break;
    case BBR_PROBE_RTT:
        bbr->pacing_gain = BBR_UNIT;
        bbr->cwnd_gain = BBR_UNIT;
        break;
    default:
        WARN_ONCE(1, "BBR bad mode: %u\n", bbr->mode);
        break;
    }
}

static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
{
    /*
    1、更新带宽和延迟的估计值:根据收到的ACK信息和经过的时间,更新带宽和延迟的估计值,
        以便在后续的拥塞控制决策中使用。
    2、调整拥塞窗口和发送速率:根据带宽估计和拥塞控制模式,调整拥塞窗口和发送速率,
        以控制数据发送的速率和量,以及适应网络的拥塞情况。
    3、更新拥塞控制参数:根据网络状态和拥塞控制模式,更新相关的拥塞控制参数,
        如拥塞窗口增加因子、发送速率增加因子等。
    4、监测网络状况和事件:监测网络的RTT、丢包情况以及其他事件,以便对拥塞控制算法进行相应的调整和决策。
    *///估计带宽:更新rtt周期,将带宽和minrtt加入新的rtt,bw样本
    bbr_update_bw(sk, rs);
    //计算inflight:计算预期的ack,重置ack统计周期,计算超出预期的多余数据,维护extra_acked最大值
    bbr_update_ack_aggregation(sk, rs);
    bbr_update_cycle_phase(sk, rs); //增益循环PROBE_BW
    bbr_check_full_bw_reached(sk, rs); //填充BDP管道
    bbr_check_drain(sk, rs); //状态转移到drain 排空队列
    bbr_update_min_rtt(sk, rs); //更新最小rtt
    bbr_update_gains(sk); //更新增益
}

__bpf_kfunc static void bbr_main(struct sock *sk, const struct rate_sample *rs)
{
    struct bbr *bbr = inet_csk_ca(sk);
    u32 bw;
    /*更新拥塞控制模式(mode)从启动模式(Startup mode)到拥塞避免模式(Congestion Avoidance mode),
或从拥塞避免模式到拥塞控制模式(Congestion Control mode)等*/
    bbr_update_model(sk, rs);

    bw = bbr_bw(sk);
    bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
    bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
}

__bpf_kfunc static void bbr_init(struct sock *sk)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct bbr *bbr = inet_csk_ca(sk);

    bbr->prior_cwnd = 0;
    tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
    bbr->rtt_cnt = 0;
    bbr->next_rtt_delivered = tp->delivered;
    bbr->prev_ca_state = TCP_CA_Open;
    bbr->packet_conservation = 0;

    bbr->probe_rtt_done_stamp = 0;
    bbr->probe_rtt_round_done = 0;
    bbr->min_rtt_us = tcp_min_rtt(tp);
    bbr->min_rtt_stamp = tcp_jiffies32;

    minmax_reset(&bbr->bw, bbr->rtt_cnt, 0); /* init max bw to 0 */

    bbr->has_seen_rtt = 0;
    bbr_init_pacing_rate_from_rtt(sk);

    bbr->round_start = 0;
    bbr->idle_restart = 0;
    bbr->full_bw_reached = 0;
    bbr->full_bw = 0;
    bbr->full_bw_cnt = 0;
    bbr->cycle_mstamp = 0;
    bbr->cycle_idx = 0;
    bbr_reset_lt_bw_sampling(sk);
    bbr_reset_startup_mode(sk);

    bbr->ack_epoch_mstamp = tp->tcp_mstamp;
    bbr->ack_epoch_acked = 0;
    bbr->extra_acked_win_rtts = 0;
    bbr->extra_acked_win_idx = 0;
    bbr->extra_acked[0] = 0;
    bbr->extra_acked[1] = 0;

    cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
}

__bpf_kfunc static u32 bbr_sndbuf_expand(struct sock *sk)
{
    /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
    return 3;
}

/* In theory BBR does not need to undo the cwnd since it does not
 * always reduce cwnd on losses (see bbr_main()). Keep it for now.
 */
__bpf_kfunc static u32 bbr_undo_cwnd(struct sock *sk)
{
    struct bbr *bbr = inet_csk_ca(sk);

    bbr->full_bw = 0; /* spurious slow-down; reset full pipe detection */
    bbr->full_bw_cnt = 0;
    bbr_reset_lt_bw_sampling(sk);
    return tcp_snd_cwnd(tcp_sk(sk));
}

/* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
__bpf_kfunc static u32 bbr_ssthresh(struct sock *sk)
{
    bbr_save_cwnd(sk);
    return tcp_sk(sk)->snd_ssthresh;
}

static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
               union tcp_cc_info *info)
{
    if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
        ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
        struct tcp_sock *tp = tcp_sk(sk);
        struct bbr *bbr = inet_csk_ca(sk);
        u64 bw = bbr_bw(sk);

        bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
        memset(&info->bbr, 0, sizeof(info->bbr));
        info->bbr.bbr_bw_lo = (u32)bw;
        info->bbr.bbr_bw_hi = (u32)(bw >> 32);
        info->bbr.bbr_min_rtt = bbr->min_rtt_us;
        info->bbr.bbr_pacing_gain = bbr->pacing_gain;
        info->bbr.bbr_cwnd_gain = bbr->cwnd_gain;
        *attr = INET_DIAG_BBRINFO;
        return sizeof(info->bbr);
    }
    return 0;
}

__bpf_kfunc static void bbr_set_state(struct sock *sk, u8 new_state)
{
    struct bbr *bbr = inet_csk_ca(sk);

    if (new_state == TCP_CA_Loss) {
        struct rate_sample rs = { .losses = 1 };

        bbr->prev_ca_state = TCP_CA_Loss;
        bbr->full_bw = 0;
        bbr->round_start = 1; /* treat RTO like end of a round */
        bbr_lt_bw_sampling(sk, &rs);
    }
}

static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
    .flags = TCP_CONG_NON_RESTRICTED,
    .name = "bbr",
    .owner = THIS_MODULE,
    .init = bbr_init,
    .cong_control = bbr_main,
    .sndbuf_expand = bbr_sndbuf_expand,
    .undo_cwnd = bbr_undo_cwnd,
    .cwnd_event = bbr_cwnd_event,
    .ssthresh = bbr_ssthresh,
    .min_tso_segs = bbr_min_tso_segs,
    .get_info = bbr_get_info,
    .set_state = bbr_set_state,
};

BTF_SET8_START(tcp_bbr_check_kfunc_ids)
#ifdef CONFIG_X86
#ifdef CONFIG_DYNAMIC_FTRACE
BTF_ID_FLAGS(func, bbr_init)
BTF_ID_FLAGS(func, bbr_main)
BTF_ID_FLAGS(func, bbr_sndbuf_expand)
BTF_ID_FLAGS(func, bbr_undo_cwnd)
BTF_ID_FLAGS(func, bbr_cwnd_event)
BTF_ID_FLAGS(func, bbr_ssthresh)
BTF_ID_FLAGS(func, bbr_min_tso_segs)
BTF_ID_FLAGS(func, bbr_set_state)
#endif
#endif
BTF_SET8_END(tcp_bbr_check_kfunc_ids)

static const struct btf_kfunc_id_set tcp_bbr_kfunc_set = {
    .owner = THIS_MODULE,
    .set = &tcp_bbr_check_kfunc_ids,
};

static int __init bbr_register(void)
{
    int ret;

    BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);

    ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
                    &tcp_bbr_kfunc_set);
    if (ret < 0)
        return ret;
    return tcp_register_congestion_control(&tcp_bbr_cong_ops);
}

static void __exit bbr_unregister(void)
{
    tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
}

 

标签:struct,代码,tcp,sk,rtt,bw,cwnd,bbr
From: https://www.cnblogs.com/codestack/p/17506780.html

相关文章

  • TCP相关知识
    1、TCP可靠传输是怎么实现的?TCP(TransmissionControlProtocol,传输控制协议)是一种面向连接的、可靠的传输协议。在TCP中,可靠传输是通过以下几种机制来实现的:序列号和确认应答机制:在TCP通信过程中,每个数据包都有一个唯一的序列号。接收方通过确认应答机制来告诉发送方已经正......
  • TCP连接中CLOSE_WAIT状态的原因与解决方法?
        关闭socket分为主动关闭和被动关闭两种情况。前者是指有本地主机主动发起的关闭;而后者则是指本地主机检测到远程主机发起关闭之后,作出回应,从而关闭整个连接;将关闭部分的状态转移摘出来,就得到了下图: 产生原因?通过图上,我们来分析,什么情况下,连接处于CLOSE_WAIT状......
  • Modbus RTU 转 Modbus TCP协议转换网关
    现今,工业自动化系统中,西门子和欧姆龙PLC是最常用的控制器之一。然而,由于PLC之间使用的通信协议不尽相同,因此需要一种能够实现多种协议转换的采集网关产品。BL110采集网关就是一款能够支持西门子和欧姆龙PLC远程数据上云平台的产品。BL110采集网关采用嵌入式Linux系统开发,具有高度的......
  • 监听调试web service的好工具TCPMon
    一般的远程监控软件都是用c或者c++等语言开发的,而使用java如何来实现相同的功能呢。 首先我们先介绍一下一个简单的远程监控程序的实现原理。 功能一,远程屏幕监视 (1)必须要有监控端与被监控端,而且程序保持启动。 (2)被监控端获取本机的屏幕截屏发图给监控端。 (3)监控端在......
  • 优维低代码实践:数据加工/转化详解
    优维低代码技术专栏,是一个全新的、技术为主的专栏,由优维技术委员会成员执笔,基于优维7年低代码技术研发及运维成果,主要介绍低代码相关的技术原理及架构逻辑,目的是给广大运维人提供一个技术交流与学习的平台。优维低代码实践连载第⑧期《数据加工/转化详解》▽一、表达式VisualBuild......
  • PHP代码加密实战过程 Swoole Loader
    帮一个客户处理一个小程序bug修复,前面不知道客户是直接购买一个倒闭的公司产品,还是破解版本的。其中一些核心工具类代码进行了加密,通过排查就找到了SwooleCompiler 今天演示下如何进行代码加密:大致步骤如下:注册 SwooleCompiler 账号地址:Swoole-Compiler-最佳PHP......
  • 怎么部署代码到git上,并配置idea 拉取代码等操作
     怎么部署代码到git上,并配置idea拉取代码等操作?1要将代码部署到Git上并配置IDEA以拉取代码,您可以按照以下步骤进行操作:231.创建一个Git仓库:首先,在Git托管平台(如GitHub、GitLab、Bitbucket等)上创建一个新的仓库。请根据您的需求进行设置,并获取仓库的URL。452.......
  • 代码优化
    代码优化1.使用对象池减少对重复对象的创建,比如tcp链接、数据库链接、多线程2.调整连接数,连接池、数据库链接数、tomcat、nginx连接数3.利用缓存技术增加缓存、本地缓存(tomcat内存之中,不走网络)、redis缓存4.串行改并行,即单线程改多线程5.同步改异步,使用场景:本次调用接口的结果会影......
  • 三层代码生成器
    packagecom.uma.hsnn.util;importcom.baomidou.mybatisplus.annotation.DbType;importcom.baomidou.mybatisplus.core.exceptions.MybatisPlusException;importcom.baomidou.mybatisplus.core.toolkit.StringUtils;importcom.baomidou.mybatisplus.generator.AutoGe......
  • 【HarmonyOS】低代码开发使用module中的自定义组件
     “Module是应用/服务的基本功能单元,包含了源代码、资源文件、第三方库及应用/服务配置文件,每一个Module都可以独立进行编译和运行。一个HarmonyOS应用/服务通常会包含一个或多个Module,因此,可以在工程中创建多个Module,每个Module分为Ability和Library两种类型。”这个是HarmonyOS......