这一篇Blog是在A First course in FEM —— matlab代码实现求解传热问题(稳态) 基础上更进一步,求解瞬态传热问题。
两者的区别如下图所示:
1. 问题描述
求解下图图所示叶片的温度场在[0-1200s]时间段内的变化,初始条件:T(0)=25℃。
控制方程为:
2. 模型和网格
模型和网格设置详见A First course in FEM —— matlab代码实现求解传热问题(稳态)
3. 系统矩阵
4. 代码实现
与稳态问题的代码框架一致。不同的代码如下:
bladeheat.m
% Clear variables clear all; % Set gas temperature and wall heat transfer coefficients at % boundaries of the blade. Note: Tcool(i) and hwall(i) are the % values of Tcool and hwall for the ith boundary which are numbered % as follows: % % 1 = external boundary (airfoil surface) % 2 = 1st internal cooling passage (from leading edge) % 3 = 2nd internal cooling passage (from leading edge) % 3 = 3rd internal cooling passage (from leading edge) % 3 = 4th internal cooling passage (from leading edge) Tcool = [1573, 473, 473, 473, 473]; hwall = [205.8*10^-6, 65.8*10^-6, 65.8*10^-6, 65.8*10^-6, 65.8*10^-6]; k=14.7*10^-3; ro= 4.5*10^-6; c=544; % Load in the grid file % NOTE: after loading a gridfile using the load(fname) command, % three important grid variables and data arrays exist. These are: % % Nt: Number of triangles (i.e. elements) in mesh % % Nv: Number of nodes (i.e. vertices) in mesh % % Nbc: Number of edges which lie on a boundary of the computational % domain. % % tri2nod(3,Nt): list of the 3 node numbers which form the current % triangle. Thus, tri2nod(1,i) is the 1st node of % the i'th triangle, tri2nod(2,i) is the 2nd node % of the i'th triangle, etc. % % xy(2,Nv): list of the x and y locations of each node. Thus, % xy(1,i) is the x-location of the i'th node, xy(2,i) % is the y-location of the i'th node, etc. % % bedge(3,Nbc): For each boundary edge, bedge(1,i) and bedge(2,i) % are the node numbers for the nodes at the end % points of the i'th boundary edge. bedge(3,i) is an % integer which identifies which boundary the edge is % on. In this solver, the third value has the % following meaning: % % bedge(3,i) = 0: edge is on the airfoil % bedge(3,i) = 1: edge is on the first cooling passage % bedge(3,i) = 2: edge is on the second cooling passage % bedge(3,i) = 3: edge is on the third cooling passage % bedge(3,i) = 4: edge is on the fourth cooling passage % bladeread; % Start timer Time0 = cputime; % Zero stiffness matrix K = zeros(Nv, Nv); b = zeros(Nv, 1); C= zeros(Nv, Nv); % Zero maximum element size hmax = 0; % Loop over elements and calculate residual and stiffness matrix for ii = 1:Nt, kn(1) = tri2nod(1,ii); kn(2) = tri2nod(2,ii); kn(3) = tri2nod(3,ii); xe(1) = xy(1,kn(1)); xe(2) = xy(1,kn(2)); xe(3) = xy(1,kn(3)); ye(1) = xy(2,kn(1)); ye(2) = xy(2,kn(2)); ye(3) = xy(2,kn(3)); % Calculate circumcircle radius for the element % First, find the center of the circle by intersecting the median % segments from two of the triangle edges. dx21 = xe(2) - xe(1); dy21 = ye(2) - ye(1); dx31 = xe(3) - xe(1); dy31 = ye(3) - ye(1); x21 = 0.5*(xe(2) + xe(1)); y21 = 0.5*(ye(2) + ye(1)); x31 = 0.5*(xe(3) + xe(1)); y31 = 0.5*(ye(3) + ye(1)); b21 = x21*dx21 + y21*dy21; b31 = x31*dx31 + y31*dy31; xydet = dx21*dy31 - dy21*dx31; x0 = (dy31*b21 - dy21*b31)/xydet; y0 = (dx21*b31 - dx31*b21)/xydet; Rlocal = sqrt((xe(1)-x0)^2 + (ye(1)-y0)^2); if (hmax < Rlocal), hmax = Rlocal; end % Calculate all of the necessary shape function derivatives, the % Jacobian of the element, etc. % Derivatives of node 1's interpolant dNdxi(1,1) = -1.0; % with respect to xi1 dNdxi(1,2) = -1.0; % with respect to xi2 % Derivatives of node 2's interpolant dNdxi(2,1) = 1.0; % with respect to xi1 dNdxi(2,2) = 0.0; % with respect to xi2 % Derivatives of node 3's interpolant dNdxi(3,1) = 0.0; % with respect to xi1 dNdxi(3,2) = 1.0; % with respect to xi2 % Sum these to find dxdxi (note: these are constant within an element) dxdxi = zeros(2,2); for nn = 1:3 dxdxi(1,:) = dxdxi(1,:) + xe(nn)*dNdxi(nn,:); dxdxi(2,:) = dxdxi(2,:) + ye(nn)*dNdxi(nn,:); end % Calculate determinant for area weighting J = dxdxi(1,1)*dxdxi(2,2) - dxdxi(1,2)*dxdxi(2,1); A = 0.5*abs(J); % Area is half of the Jacobian % Invert dxdxi to find dxidx using inversion rule for a 2x2 matrix dxidx = [ dxdxi(2,2)/J, -dxdxi(1,2)/J; ... -dxdxi(2,1)/J, dxdxi(1,1)/J]; % Calculate dNdx dNdx = dNdxi*dxidx; %lian shi fa ze % Add contributions to stiffness matrix for node 1 weighted residual K(kn(1), kn(1)) = K(kn(1), kn(1)) + k*(dNdx(1,1)*dNdx(1,1) + dNdx(1,2)*dNdx(1,2))*A; %2*1/2A K(kn(1), kn(2)) = K(kn(1), kn(2)) + k*(dNdx(1,1)*dNdx(2,1) + dNdx(1,2)*dNdx(2,2))*A; K(kn(1), kn(3)) = K(kn(1), kn(3)) + k*(dNdx(1,1)*dNdx(3,1) + dNdx(1,2)*dNdx(3,2))*A; % Add contributions to stiffness matrix for node 2 weighted residual K(kn(2), kn(1)) = K(kn(2), kn(1)) + k*(dNdx(2,1)*dNdx(1,1) + dNdx(2,2)*dNdx(1,2))*A; K(kn(2), kn(2)) = K(kn(2), kn(2)) + k*(dNdx(2,1)*dNdx(2,1) + dNdx(2,2)*dNdx(2,2))*A; K(kn(2), kn(3)) = K(kn(2), kn(3)) + k*(dNdx(2,1)*dNdx(3,1) + dNdx(2,2)*dNdx(3,2))*A; % Add contributions to stiffness matrix for node 3 weighted residual K(kn(3), kn(1)) = K(kn(3), kn(1)) + k*(dNdx(3,1)*dNdx(1,1) + dNdx(3,2)*dNdx(1,2))*A; K(kn(3), kn(2)) = K(kn(3), kn(2)) + k*(dNdx(3,1)*dNdx(2,1) + dNdx(3,2)*dNdx(2,2))*A; K(kn(3), kn(3)) = K(kn(3), kn(3)) + k*(dNdx(3,1)*dNdx(3,1) + dNdx(3,2)*dNdx(3,2))*A; %C矩阵 C(kn(1), kn(1)) = C(kn(1), kn(1)) + ro*c*A/6; C(kn(1), kn(2)) = C(kn(1), kn(2)) + ro*c*A/12; C(kn(1), kn(3)) = C(kn(1), kn(3)) + ro*c*A/12; C(kn(2), kn(1)) = C(kn(2), kn(1)) + ro*c*A/12; C(kn(2), kn(2)) = C(kn(2), kn(2)) + ro*c*A/6; C(kn(2), kn(3)) = C(kn(2), kn(3)) + ro*c*A/12; C(kn(3), kn(1)) = C(kn(3), kn(1)) + ro*c*A/12; C(kn(3), kn(2)) = C(kn(3), kn(2)) + ro*c*A/12; C(kn(3), kn(3)) = C(kn(3), kn(3)) + ro*c*A/6; end % Loop over boundary edges and account for bc's % Note: the bc's are all convective heat transfer coefficient bc's % so the are of 'Robin' form. This requires modification of the % stiffness matrix as well as impacting the right-hand side, b. % for ii = 1:Nbc, % Get node numbers on edge kn(1) = bedge(1,ii); kn(2) = bedge(2,ii); % Get node coordinates xe(1) = xy(1,kn(1)); xe(2) = xy(1,kn(2)); ye(1) = xy(2,kn(1)); ye(2) = xy(2,kn(2)); % Calculate edge length ds = sqrt((xe(1)-xe(2))^2 + (ye(1)-ye(2))^2); % Determine the boundary number bnum = bedge(3,ii) + 1; % Based on boundary number, set heat transfer bc K(kn(1), kn(1)) = K(kn(1), kn(1)) + hwall(bnum)*ds*(1/3); K(kn(1), kn(2)) = K(kn(1), kn(2)) + hwall(bnum)*ds*(1/6); b(kn(1)) = b(kn(1)) + hwall(bnum)*ds*0.5*Tcool(bnum); K(kn(2), kn(1)) = K(kn(2), kn(1)) + hwall(bnum)*ds*(1/6); K(kn(2), kn(2)) = K(kn(2), kn(2)) + hwall(bnum)*ds*(1/3); b(kn(2)) = b(kn(2)) + hwall(bnum)*ds*0.5*Tcool(bnum); end %确定Tsol维度 timetot=1200; dt=10; n=fix(timetot/dt); Tsol=298*ones(Nv,n+1); %methode to run theta=0.5; % Solve for temperature for i=1:n Tsol(:,i+1)=inv(C+dt.*theta.*K)*((C-dt.*(1-theta).*K)*Tsol(:,i)+dt.*b); end Tmax = max(max(Tsol)); Tmin = min(min(Tsol)); Tmaxx = max(max(Tsol(:,n+1))); Tminn = min(min(Tsol(:,n+1))); % Finish timer Time1 = cputime; % Plot solution bladeplot; % Report outputs fprintf('Number of nodes = %i\n',Nv); fprintf('Number of elements = %i\n',Nt); fprintf('Maximum element size = %5.3f\n',hmax); fprintf('Minimum temperature = %6.1f\n',Tmin); fprintf('Maximum temperature = %6.1f\n',Tmax); fprintf('Minimum temperature at last = %6.1f\n',Tminn); fprintf('Maximum temperature at last = %6.1f\n',Tmaxx); fprintf('CPU Time (secs) = %f\n',Time1 - Time0);
bladeplot.m
% Plot T in triangles v=VideoWriter('transientblade.avi'); open(v); f=10;num=fix(n/f); for i=0:num-1 for ii = 1:Nt for nn = 1:3 xtri(nn,ii) = xy(1,tri2nod(nn,ii)); ytri(nn,ii) = xy(2,tri2nod(nn,ii)); Ttri(nn,ii) = Tsol(tri2nod(nn,ii),1+f*i); end end figure; HT = patch(xtri,ytri,Ttri); axis('equal'); set(HT,'LineStyle','none'); title('Temperature(K)'); caxis([298,1573]); HC = colorbar; colormap(jet); hold on; bladeplotgrid; hold off; frame(i+1)=getframe; end writeVideo(v,frame); close(v);
5. 计算结果
全过程最低温度= 282.1 K
全过程最高温度 = 1572.1 K
1200s时最低温度 = 1013.0 K
1200s时最高温度 = 1572.1 K
1200S时温度分布如下图,与稳态时的温度分布相近。
标签:FEM,ye,kn,xe,ii,course,matlab,dNdx,dxdxi From: https://www.cnblogs.com/spacerunnerZ/p/17489238.html