符号主义、连接主义、行为主义是人工智能的三大学派。
符号主义 (symbolicism)
符号主义,又称逻辑主义、心理学派或计算机学派。
人工智能的符号主义学派是一种认为人工智能源于数理逻辑的观点,它试图用符号系统和规则来表示和操作人类的思维过程,例如推理、证明、解决问题等。
下图是用决策树模型输入业务特征预测天气,就是典型的符号主义。
图: 用决策树模型输入业务特征预测天气
它叫做符号主义,是因为它使用了数学和物理学中的逻辑符号,如变量、常量、函数、谓词、量词等,来构建复杂的表达式和语句,从而表达知识和逻辑。
符号主义学派是人工智能的早期和主流学派之一,它的代表性成果有专家系统和知识工程等。
符号主义首个代表性成果是: 1956年Newell和 Simon等人研制的成为“逻辑理论家”的数学定理证明程序LT,可以证明出《自然哲学的数字原理》(Principia Mathematica)中的38条数学定理(后来可以证明全部52条定理),表明了可以应用计算机研究人的思维过程,模拟人类智能活动。
图:Newell 和 Simon
符号主义最辉煌的时候,是专家系统,专家系统的能力来自于它们存储的专业知识,知识库系统和知识工程成为了上世纪80年代AI研究的主要方向。
图:专家系统
- 专家系统仅限于一个专业细分的知识领域,从而避免了常识问题;
- 专家系统其简单的设计又使它能够较为容易地编程实现或修改。
- 专家系统仅仅局限于某些特定情景,且知识采集难度大、费用高、使用难度大,在其它领域如机器翻译、语音识别等领域基本上未取得成果。未能实现的日本的第五代计算机项目就是典型。
图:日本第五代计算机概念图
在20世纪80年代末,符号主义学派开始衰落。其原因如下:
- 符号主义试图将人类思想、行为和结果抽象为简洁深入的规则,类似于数学定理。然而,人类的思想是极其复杂而广泛的,而人类的智能不仅仅是逻辑和推理的结果。
- 人类抽象出的符号,源头是身体对物理世界的感知,人类能够通过符号进行交流,是因为人类拥有类似的身体。计算机只处理符号,就不可能有类人感知,人类可意会而不能言传的“潜智能”,不必或不能形式化为符号,更是计算机不能触及的。
1997年5月,名为“深蓝”的IBM超级计算机打败了国际象棋世界冠军卡斯帕罗夫,这一事件在当时也曾轰动世界,其实本质上,“深蓝”就是符号主义在博弈领域的成果。
图:卡斯帕罗夫对战超级电脑“深蓝”
连接主义 (connectionism)
连接主义认为人工智能源于仿生学,用神经网络和学习算法来模拟人类的大脑结构(神经元的连接)和功能,代表性的成果有感知机和反向传播算法。
1957年,弗兰克·罗森布拉特(Frank Rosenblatt)在一台IBM-704计算机上模拟实现了一种他发明的叫做“感知机”(Perceptron)的神经网络模型。
图:神经细胞与感知机
感知机可以被视为一种最简单形式的前馈式人工神经网络,是一种二分类的线性分类判别模型,其输入为实例的特征向量(x1,x2...),神经元的激活函数f为sign,输出为实例的类别(+1或者-1),模型的目标是要将输入实例通过超平面将正负二类分离。
1969年,“符号主义”代表人物马文·明斯基(Marvin Minsky)的著作《感知器》提出对XOR线性不可分的问题:单层感知器无法划分XOR原数据,解决这问题需要引入更高维非线性网络(MLP, 至少需要两层),但多层网络并无有效的训练算法。这些论点给神经网络研究以沉重的打击,神经网络的研究走向长达10年的低潮时期。
1974年,哈佛大学沃伯斯(Paul Werbos)博士论文里,首次提出了通过误差的反向传播(BP)来训练人工神经网络。
BP算法的基本思想不是(如感知器那样)用误差本身去调整权重,而是用误差的导数(梯度)调整。通过误差的梯度做反向传播,更新模型权重,以下降学习的误差,拟合学习目标,实现“网络的万能近似功能”的过程。
其后的发展就是等算力和数据的提升,我们在深度学习中有讲解。
知识图谱
知识图谱是大数据时代的知识工程集大成者,是符号主义与连接主义相结合的产物,是实现认知智能的基石。
行为主义 (actionism)
强调行为和刺激之间的关系,将人类的思维过程看成是一种条件反射和刺激响应的过程。认为人工智能源于控制论,用感知-动作模式和自适应机制来模拟人类的行为和反应,代表性的成果有进化算法和多智能体系统。
这一学派的代表作者首推布鲁克斯(Brooks)的六足行走机器人,它被看作是新一代的“控制论动物”,是一个基于感知-动作模式模拟昆虫行为的控制系统。
图:1989年,由麻省理工学院制造的六足机器人Genghis(成吉思汗),被认为是现代历史上最重要的机器人之一。由于其体积小,材料便宜,Genghis被认为缩短了生产时间和未来空间机器人设计的成本。它有12个伺服电机和22个传感器,可以穿越多岩石的地形。
在他的实验室中还有大量的机器昆虫(如上图所示),相对于那些笨拙的机器人铁家伙来说,这些小昆虫要灵活得多。
著名的研究成果还有波士顿动力机器人和波士顿大狗。
图:波士顿大狗
总结
研究领域 | 注重方向 | |
符号主义 | 研究抽象思维 | 注重数学可解释性 |
连接主义 | 研究形象思维 | 偏向于仿人脑模型 |
行为主义 | 研究感知思维 | 偏向于应用和身体模拟 |
人类具有智能不仅仅是因为人有大脑,并且能够保持持续学习。机器要想更“智能”,也需要不断学习。符号主义靠人工赋予机器智能,连接主义是靠机器自行习得智能,行为主义在与环境的作用和反馈中获得智能。它们彼此之间扬长补短,相信随着人工智能研究的不断深入,这三大学派会融合贯通,共同合作创造更强大的强大的人工智能。
标签:符号,人工智能,大学,智能,人类,专家系统,主义 From: https://blog.51cto.com/u_15588078/6531134