首页 > 其他分享 >软件测试|数据处理神器pandas教程(六)

软件测试|数据处理神器pandas教程(六)

时间:2023-06-20 14:34:24浏览次数:52  
标签:GDP excel Excel 神器 pd 写入 pandas 软件测试

在这里插入图片描述

前言

之前我们介绍了pandas读写csv文件,json文件,本篇文章我们来介绍一下pandas读写Excel文件。

获取更多免费技术资料,请点击!

关于Excel

Excel 是由微软公司开发的办公软件之一,它在日常工作中得到了广泛的应用。在数据量较少的情况下,Excel 对于数据的处理、分析、可视化有其独特的优势,因此可以显著提升您的工作效率。但是,当数据量非常大时,Excel 的劣势就暴露出来了,比如,操作重复、数据分析难等问题。Pandas 提供了操作 Excel 文件的函数,可以很方便地处理 Excel 表格。

数据准备

我们获取到2022年部分省份的经济数据,将数据整理到一个Excel文件中,命名为data.xlsx,部分数据如下图所示:

在这里插入图片描述

读取数据

pandas提供了read_excel()方法读取Excel中的数据,具体使用方法如下:

import pandas as pd


df = pd.read_excel('data.xlsx')
print(df)

------------------------------
输出结果如下:
    排名   省份    GDP(亿元)  增长率  常住人口(万人)  人均GDP(万元)  人均收入(元)
0    1   广东  129118.58  1.9  12684.00      10.18    47065
1    2   江苏  122875.60  2.8   8505.40      14.45    49862
2    3   山东   87435.00  3.9  10169.99       8.60    37560
3    4   浙江   77715.00  3.1   6540.00      11.88    60302
4    5   河南   61345.05  3.1   9883.00       6.21    28222
5    6   四川   56749.80  2.9   8372.00       6.78    30679
6    7   湖北   53734.92  4.3   5844.00       9.22    32914
7    8   福建   53109.85  4.7   4188.00      12.68    43118
8    9   湖南   48670.37  4.5   6604.00       7.35    34036
9   10   安徽   45045.00  3.5   6127.00       7.37    32745
10  11   上海   44652.80 -0.2   2489.43      17.94    79610
11  12   河北   42370.40  3.8   7420.00       5.69    30867
12  13   北京   41610.90  0.7   2188.60      19.01    77415
13  14   陕西   32772.68  4.3   3954.00       8.29    30116
14  15   江西   32074.70  4.7   4517.40       7.10    32419
15  16   重庆   29129.03  2.6   3212.43       9.07    35666
16  17   辽宁   28975.10  2.1   4255.00       6.85    36089
17  18   云南   28954.20  4.3   4690.00       6.17    26937
18  19   广西   26300.87  2.9   5037.00       5.22    27981
19  20   山西   25642.59  4.4   3480.48       7.37    29178
20  21  内蒙古   23159.00  4.2   2400.00       9.65    35921
21  22   贵州   20164.58  1.2   3858.00       5.23    25508
22  23   新疆   17741.34  3.2   2589.00       6.85    27063
23  24   天津   16311.34  1.0   1373.00      11.88    48976
24  25  黑龙江   15901.00  2.7   3125.00       5.09    28346
25  26   吉林   13070.24 -1.9   2375.37       5.50    27975
26  27   甘肃   11201.60  4.5   2490.02       4.50    23273
27  28   海南    6818.22  0.2   1020.46       6.68    30957
28  29   宁夏    5069.57  4.0    725.00       6.99    29599
29  30   青海    3610.10  2.3    594.00       6.08    27000
30  31   西藏    2132.64  1.1    366.00       5.83    26675

注:使用pandas读取Excel数据时,需要提前安装openpyxl库。

我们可以发现,索引和我们需要的实际排名刚好差了1,我们想要将索引去掉,直接以排名做索引应该如何操作呢? pandas提供了index_col参数来解决这个问题,我们使用这个参数就可以实现我们的需求,代码如下:

import pandas as pd


df = pd.read_excel('data.xlsx', , index_col='排名')
print(df)
---------------------------
输出结果如下:
     省份    GDP(亿元)  增长率  常住人口(万人)  人均GDP(万元)  人均收入(元)
排名                                                   
1    广东  129118.58  1.9  12684.00      10.18    47065
2    江苏  122875.60  2.8   8505.40      14.45    49862
3    山东   87435.00  3.9  10169.99       8.60    37560
4    浙江   77715.00  3.1   6540.00      11.88    60302
5    河南   61345.05  3.1   9883.00       6.21    28222
6    四川   56749.80  2.9   8372.00       6.78    30679
7    湖北   53734.92  4.3   5844.00       9.22    32914
8    福建   53109.85  4.7   4188.00      12.68    43118
9    湖南   48670.37  4.5   6604.00       7.35    34036
10   安徽   45045.00  3.5   6127.00       7.37    32745
------
# 篇幅所限没有将全部输出复制过来

写入数据

pandas同样可以向Excel文件中写入数据,通过 to_excel() 函数可以将 Dataframe 中的数据写入到 Excel 文件。如果想要把单个对象写入 Excel 文件,那么必须指定目标文件名;如果想要写入到多张工作表中,则需要创建一个带有目标文件名的ExcelWriter对象,并通过sheet_name参数依次指定工作表的名称。示例代码如下:

import pandas as pd
#创建DataFrame数据
info_enonomy = pd.DataFrame({'国家': ['美国', '中国', '日本', '德国', '印度', '英国', '法国', '意大利', '加拿大', '韩国'],
     '排名': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
     '地域': ['北美洲', '亚洲', '亚洲','欧洲', '亚洲', '欧洲', '欧洲', '欧洲', '北美洲', '亚洲' ],
     'GDP': [22.94, 16.86, 5.1, 4.23, 3.11, 2.95, 2.94, 2.12, 2.02, 1.82]})
#创建ExcelWrite对象
writer = pd.ExcelWriter('economy.xlsx')
info_enonomy.to_excel(writer)
writer.save()
print('输出成功')

生成的Excel表格如下:

在这里插入图片描述

总结

本文主要介绍了使用pandas读取和写入Excel文件的方法,后面我们将介绍pandas对时间的处理。

获取更多免费技术资料,请点击!

标签:GDP,excel,Excel,神器,pd,写入,pandas,软件测试
From: https://www.cnblogs.com/hogwarts/p/17493571.html

相关文章

  • 软件测试|数据处理神器pandas教程(七)
    前言当进行数据分析时,我们会遇到很多带有日期、时间格式的数据集,在处理这些数据集时,可能会遇到日期格式不统一的问题,此时就需要对日期时间做统一的格式化处理。比如“Friday,March24,2023”可以写成“24/3/23”,或者写成“03-24-2023”。获取更多免费技术资料,请点击!日期格式......
  • 【实用软件测试教程】6-功能测试
    文章目录6功能测试6.1系统测试概论6.2功能测试概述6.3功能测试的策略6.4功能测试的内容6.5功能测试的方法6.6.QuickTestProfessional(QTP)6功能测试功能模块是系统测试阶段的重点内容,软件系统开发的首要目标是确保功能正确。功能测试主要是根据软件系统的特征、操作描述和......
  • 软件测试的冒烟测试
    软件测试是软件开发过程中的一个非常重要的部分,能够有效地保证软件的质量和用户体验。而在软件测试中,冒烟测试被认为是一项非常关键的测试工作,因为它可以帮助团队快速定位软件中可能存在的问题,并及时进行修复。什么是冒烟测试?冒烟测试(SmokeTesting)也叫做构建验证测试(BuildVerific......
  • 软件测试四大测试
    单元测试是一种针对程序中最小可测试单元(通常是函数或方法)的测试方法。下面是进行单元测试的一般步骤:1.确定被测试的单元:选择要测试的函数或方法,并分析其输入、输出、边界条件等特性。2.编写测试用例:根据被测试单元的特性,编写测试用例,包括针对不同情况的测试输入和期望......
  • Loop or Iterate over all or certain columns of a dataframe in Python-pandas 遍历
    Inthisarticle,wewilldiscusshowtolooporIterateoverallorcertaincolumnsofaDataFrame?Therearevariousmethodstoachievethistask.Let’sfirstcreateaDataframeandseethat: Code:  Python3  #importpandaspackageim......
  • 从pandas dataframe保存csv文件,不带双引号
    为了保存来自pandasdataframe的csv文件,我尝试了以下方法:res.to_csv('seq_test.fa',header=False,index=False,sep='\t',quoting=csv.QUOTE_NONE)复制这给出了以下错误:needtoescape,butnoescapecharset如果我不使用quoting=csv.QUOTE_NONE。我通过以下方式......
  • 软件测试|Python科学计算神器numpy教程(一)
    前言之前我们使用matplotlib绘制了不一样的图形,其实在我们的绘制图像时,我们输入的数据都是经过处理之后再通过matplotlib以及pillow进行绘制的。我们在绘制图形的脚本里,引入了一个对数组执行数学运算和相关逻辑运算的第三方库——Numpy,当然numpy功能不止于此,它还是python科学计算的......
  • 软件测试|教你如何离线安装第三方库
    前言在日常工作生活中,我们有时需要在无法联网的设备中安装Python第三方库,在联网的情况下,我们安装第三方库只需要一条pip命令即可,运行命令之后,会自动开始下载;当我们在无法联网的情况下,我们就需要先行下载好第三方库,传输到未联网的电脑,并使用命令行安装。本文我们以安装requests库为......
  • 软件测试|pip安装第三方库报代理错误,怎么解决
    前言pip是我们使用python时最常用的一个工具,我们安装卸载更新Python的第三方库都是依靠这个命令的,即使我们是使用pycharm来管理我们的第三方库,本质上还是通过pip来实现第三方库的安装卸载更新的。因此,对于一些在使用pip时出现的报错,进行一些经验的总结就很有必要了。安装第三方库时......
  • 软件测试|web自动化测试神器playwright教程(二十七)
    前言使用selenium进行web自动化测试,如果我们打开了多个网页,进行网页切换时,我们需要先获取各个页面的句柄,通过句柄来区分各个页面,然后使用switch_to.window()实现切换,这样的操作比较麻烦,playwright的网页切换比selenium更为简单快捷。本文就给大家介绍一下playwright多个网页的切换......