本文将详细解释XGBoost中十个最常用超参数的介绍,功能和值范围,及如何使用Optuna进行超参数调优。
对于XGBoost来说,默认的超参数是可以正常运行的,但是如果你想获得最佳的效果,那么就需要自行调整一些超参数来匹配你的数据,以下参数对于XGBoost非常重要:
eta
num_boost_round
max_depth
subsample
colsample_bytree
gamma
min_child_weight
lambda
alpha
XGBoost的API有2种调用方法,一种是我们常见的原生API,一种是兼容Scikit-learn API的API,Scikit-learn API与Sklearn生态系统无缝集成。我们这里只关注原生API(也就是我们最常见的),但是这里提供一个列表,这样可以帮助你对比2个API参数,万一以后用到了呢:
https://avoid.overfit.cn/post/a432cd97278c4daabae268e53dc40db5
标签:指南,Scikit,XGBoost,调优,参数,learn,API From: https://www.cnblogs.com/deephub/p/17481924.html