Softmax Regression是Logistic回归在多分类上的推广,对于Logistic回归以及Softmax Regression的详细介绍可以参见:
- 简单易学的机器学习算法——Logistic回归
- 利用Theano理解深度学习——Logistic Regression
- 深度学习算法原理——Softmax Regression
下面的代码是利用TensorFlow基本API实现的Softmax Regression:
'''
@author:zhaozhiyong
@date:20170822
Softmax Regression
'''
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("./MNIST_data", one_hot=True)
learning_rate = 0.01
training_epochs = 1000
batch_size = 100
display_step = 50
n_input = 784
n_classes = 10
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
w1 = tf.Variable(tf.random_normal([n_input, n_classes]))
b1 = tf.Variable(tf.random_normal([n_classes]))
pred = tf.add(tf.matmul(x, w1), b1)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(mnist.train.num_examples/batch_size)
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
avg_cost += c / total_batch
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
print "Optimization Finished!"
print "Get test data:"
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})
以下是运行的结果:
参考文献
- [03]tensorflow实现softmax回归(softmax regression)