太阳系的起源
太阳系的起源理论必须能合理的回答下面所列的几个主要问题:太阳系物质的来源,行星的形成过程,行星轨道特性(共面性、同向性、近园性),提丢斯-波特(Titius-Bode)定则,太阳系的角动量分布,三类行星(类地、巨行、远日行星)的大小、质量、密度方面的差别,行星的自转特性,彗星的起源,地-月系统的起源。
太阳相对于它的公转银河中心运行时约带一点扭矩,所以太阳的自转赤道与黄道(星盘)面有7度多的夹角,所形成的行星自转轴,也不垂直于黄道面。(黄道面:地球绕太阳公转的轨道面。黄道带:黄道两旁各宽8度的范围,日、月、行星都在带内运行)
原初太阳系,不是由太阳和绕太阳运行的行星组成,而是仅为一个原初太阳球。绕银河高速旋转,同时自身也在高速自旋。
处于高速自旋的太阳球外表面的物体,由于受太阳自转的作用,与太阳外表面的太阳大气一同绕太阳高速转动,产生极大的离心力,同时,太阳外表的物体和太阳大气受太阳引力的作用,使物体和大气都束缚在太阳周围。当物体受到的引力和离心力相等时,物体悬浮在太阳大气中既不上升也不下降。
由于处于太阳中心的巨大的原子核在不断进行核裂变,放出巨大的核能。能量和射线穿透太阳大气火焰层进入茫茫宇宙,这时太阳质量慢慢减少,太阳对外表物体的吸引力也随之慢慢减小。从而使得悬浮在太阳大气中的物体慢慢远离太阳,形成在低轨道上绕太阳运行的行星。最早从太阳表面分离出来的行星就是现在离太阳最远的行星。随着时间的推移,太阳将继续演化,有可能还会从太阳表面形成新的行星。
太阳产生新的行星的条件主要有两点:
第一,太阳必须保持高速自转。在太阳外表的物体受到的离心力必须等于或大于太阳对它的引力。
第二,太阳内部必须继续发生核反应。反应产生的能量和射线能透过太阳大气进入茫茫宇宙。使太阳的质量逐渐减小,从而使太阳对其外表的物体的吸引力逐渐减小。
从原初太阳球转化成太阳系的过程,是一个极其漫长的天体演变的过程。太阳最初的产物是冥王星,其次是海王星、天王星、土星、木星、火星、地球、金星和水星,以后可能还有新的行星从太阳中诞生,加入到太阳系行星大家族。
随着宇宙体积不断膨胀,太阳系的体积也随之膨胀,太阳对其周围行星的吸引力将随着太阳的质量的减小和体积的膨胀而逐渐减弱,使得行星慢慢远离太阳,但这个过程极为缓慢。随着太阳与行星的距离增大,行星受到的太阳辐射减弱,行星表面的温度将会下降,下降到一定程度将会破坏行星表面生物的生存环境,也会影响到人类的生存。由于太阳系轻微的天体演变,将会在很大程度上改变人类赖以生存行星环境,使得整个人类社会消亡。
刚刚从太阳表面分离出来的行星,是由太阳内部剧烈的核爆炸喷发出来的带有大量的较重的原子核的集合体组成的,和太阳一样也发生着剧烈的核裂变和核聚变,但行星中心的原子核的质量要比太阳中心的小得多。由于上面所说的原因,随着时间的推移,行星离太阳距离逐渐增大,行星受到的抗核裂变的背景压力下降,有助于行星中心核的裂变,同时行星受到的太阳的辐射热也大大减少。所以,相对太阳中心的原子核来说,行星中心的核裂变很快减弱,行星表面的温度很快下降。从以上的分析容易得出,太阳和行星中心的温度肯定要比其表面温度高。
刚从太阳表面诞生的行星,在绕太阳运转的同时,受到太阳表面强烈的太阳风的扰动,使行星产生一定程度的自转。由于产生的行星大小、时间,以及受到太阳风扰动情况不同,行星自转频率不同。
绕行星运转的卫星的产生与绕太阳运转的行星的产生的情形和条件一样,也就是行星具有自转和行星中心发生着核裂变这两个条件。由此类推,卫星也可以有围绕其运转的更小的卫星。所以,可以推断,质量越大、自转频率越快、核裂变越剧烈的太阳、行星和卫星,产生其子星的可能性就越大、数量也越多,我们从现代天文观测数据可以得到很好的证明。
产生行星条件的计算。设太阳表面的重力加速度为g1,离心加速度为g2,所以有
式中 G=6.67*10-11
M=1.989*1030 kg
R=6.98*108 m
w=2.865*10-6 1/s
则
现将太阳系行星及卫星的数据列表如下
表-1 太阳系行星参数表
从以上计算和表-1知,g1/g2越小的天体,所具有的行星或卫星数就多,从某一个方面说明了行星或卫星是天体高速自转产生出来的。太阳表面引力远大于离心力,说明在近一段时间内太阳将不会产生行星。在保持太阳半径不变的情况下,太阳质量必须减少到一定程度时,太阳才有可能产生新行星。但是,随太阳质量的减少,将会伴随太阳半径和自转角频率发生变化,所以,可以通过计算,得出太阳再次产生行星的时间,以及产生行星时的角速度、质量和半径。
计算得出,只有在太阳赤道附近的物质所获得的离心力最大,所以行星总是在太阳直道附近诞生,在太阳的两极不可能诞生行星。
刚刚诞生的行星由于受太阳风的剧烈扰动,行星的公转轨道面与太阳赤道面有一定的夹角。
我们所在的银河系属旋涡星系,漩涡星系的诞生与与太阳系类似。原初银河系没有旋臂,仅为银河核球。由于核球高速自转和发生剧烈的核裂变,核球逐渐分裂和质量减轻。处于赤道附近的原初恒星开始形成。随着银河核球的质量减少,原初恒星慢慢远离银河核球,在远离过程中,恒星公转周期增加、速度减慢。由于恒星的诞生的先后顺序,从而形成离银核近的比离银核远的公转周期快,形成按先后顺序排列的角频率逐渐变慢的渐开式恒星排布。
设银核质量为M,原初恒星质量为m,银核表面半径为Ro银核自转角速度为Wo。
当原初恒星所受的引力和离心力平衡时,上式为原初恒星绕银核的公转角频率。
由于核反应,银核质量减少了M1,因引力的减小而使原初恒星逐渐离开银核,重新寻找新的平衡轨道,设新的平衡轨道半径为r,公转角频率为W,这时有
显然,恒星绕银核的角频率随着它离开银核的距离的增大而减小。由于银核产生了数以千万计的恒星群,形成有连续的按一定规律排开的渐开式旋涡星系。
依此类推,对于太阳系、行星系以及卫星系,也存在相似的渐开式旋涡星系。但由于它们所具有的行星和卫星数极少,不能排成相对连续的渐开式旋涡星系图,如果仔细分析仍不难发现,太阳系内的行星以及具有较多卫星的行星同样具有旋臂式旋涡星系结构图的痕迹。
如果某天体内的核裂变终止了,其质量不再减少,该天体的卫星也将在一个固定的轨道上运行,而不会逐渐远离该天体。