简单定义
简单起见,我们这里只考虑三位二进制数所能表示的范围,即${-4, -3, -2, -1, 0,\ 1,\ 2,\ 3}$。
机器数和真值
一个数在计算机中的二进制表现形式,就是这个数的机器数(相当于数的原码)。 例如,$-3$ 的机器数即为 $111$,$2$ 的机器数为 $010$。
机器数在考虑最高位为符号位的情况下,换算出来的值就是真值,例如 $111$ 的真值为 $-3$,而形式值为 $7$;$010$ 的形式值和真值都为 $2$。
原码、反码、补码
有符号整数的原码就是它的机器数,正数的反码与原码相同,而负数的反码则是符号位不变,其余位取反。
正数的补码(Complement)不变,负数的补码则是它的反码+1
,例如 $-1$ 的反码为 $110$,补码为 $111$。
为什么要用补码?
使用补码可以解决减法运算的问题。 例如 $2 - 1 = 2 + (-1) = 010 + 111 = 001 = 1$ ($1001$ 去掉超出的最高位)。
使用原码或者反码都不好处理这个问题。
为什么补码会有这个效果?
我们首先要意识到一点,$-1$ 的补码为 $111$,$111$ 对应的形式值为 $7$,而 $7 - (-1) = 8$。
例如,当我们使用 $2 - 1$ 时,相当于 $2 + 7 = 9$,然而,由于我们只能表示 $-4 \sim 3$ 这个范围内的所有数,大于 3 的数,就变成了 $9\ %\ 8 = 1$。
或者我们可以从循环的角度考虑:${-4, -3, -2, -1,\ 0, \ 1,\ 2,\ 3,-4,-3,-2,-1,\ 0,\ 1,\ 2,\ 3}$,正好循环到 $1$。
从数学的角度,$-1$ 与 $7$ 对 $8$ 同余,那么 $(2 + -1)\ %\ 8 = 2\ %\ 8 + (-1)\ %\ 8 = 2\ %\ 8+7\ %\ 8=(2+7)\ %\ 8$。($8$ 对应开始提到的用三位二进制表示)。
注意:$-4$ 没有原码和反码表示,补码为 $100$。(可以理解为由 $011 + 1$ 得到)
标签:真值,反码,二进制,补码,111,原码 From: https://www.cnblogs.com/zwyyy456/p/17477661.html