首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-09-25 23:23:20浏览次数:55  
标签:struct OpenFlow 端口 实践 header ofp uint16 实验 uint32

一、基本要求

1.搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据。


控制器6633端口(我最高能支持OpenFlow 1.0) ---> 交换机58076端口

交换机58076端口(我最高能支持OpenFlow 1.3) ---> 控制器6633端口

控制器6633端口(我需要你的特征信息) ---> 交换机58076端口

控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机58076端口

交换机58076端口(这是我的特征信息,请查收) ---> 控制器6633端口

  • 有两种情况:
    • 交换机查找流表,发现没有匹配条目时
    • 有匹配条目但是对应的action是OUTPUT=CONTROLLER时
    • 交换机58076端口(有数据包进来,请指示)--- 控制器6633端口

分析抓取的flow_mod数据包,控制器通过6633端口向交换机58076端口、交换机58076端口下发流表项,指导数据的转发处理

控制器6633端口(请按照我给你的action进行处理) ---> 交换机35534端口

交互图

进阶要求

1.hello

/* Header on all OpenFlow packets. */
struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};

2.Features Request与hello代码段一致

3.OFPT_SET_CONFIG

/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

4.FEATURES_REPLAY

python ```
/* Description of a physical port /
struct ofp_phy_port {
uint16_t port_no;
uint8_t hw_addr[OFP_ETH_ALEN];
char name[OFP_MAX_PORT_NAME_LEN]; /
Null-terminated */

uint32_t config;        /* Bitmap of OFPPC_* flags. */
uint32_t state;         /* Bitmap of OFPPS_* flags. */

/* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
 * unsupported or unavailable. */
uint32_t curr;          /* Current features. */
uint32_t advertised;    /* Features being advertised by the port. */
uint32_t supported;     /* Features supported by the port. */
uint32_t peer;          /* Features advertised by peer. */

};
/* Switch features. /
struct ofp_switch_features {
struct ofp_header header;
uint64_t datapath_id; /
Datapath unique ID. The lower 48-bits are for
a MAC address, while the upper 16-bits are
implementer-defined. */

uint32_t n_buffers;     /* Max packets buffered at once. */

uint8_t n_tables;       /* Number of tables supported by datapath. */
uint8_t pad[3];         /* Align to 64-bits. */

/* Features. */
uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

/* Port info.*/
struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                  is inferred from the length field in
                                  the header. */

};

![](/i/l/?n=22&i=blog/2971300/202209/2971300-20220925225550785-1933760567.png)
### 5.PACKET_IN
``` python
enum ofp_packet_in_reason {
    OFPR_NO_MATCH,          /* No matching flow. */
    OFPR_ACTION             /* Action explicitly output to controller. */
};
/* Packet received on port (datapath -> controller). */
struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

6.PACKET_OUT

··· python
/* Send packet (controller -> datapath). /
struct ofp_packet_out {
struct ofp_header header;
uint32_t buffer_id; /
ID assigned by datapath (-1 if none). /
uint16_t in_port; /
Packet's input port (OFPP_NONE if none). /
uint16_t actions_len; /
Size of action array in bytes. /
struct ofp_action_header actions[0]; /
Actions. /
/
uint8_t data[0]; / / Packet data. The length is inferred
from the length field in the header.
(Only meaningful if buffer_id == -1.) */
};

![](/i/l/?n=22&i=blog/2971300/202209/2971300-20220925230148962-251357567.png)
### 7.FLOW_MOD
``` python
/* Flow setup and teardown (controller -> datapath). */
struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};

个人总结

关于难度

  • 本次实验难度简单。基本以阅读为主,没有什么操作,属于认知性实验。通过这次实验了解并掌握了OpenFlow通讯过程中数据包的流动过程,了解了Openflow通讯过程中都存在哪些包,及其作用。

实验中遇到的问题:

  • 开wireshark后创建拓扑,过滤Openflow数据包,并没有发现Flow_Mod数据包,通过了解这个包是指导数据的转发处理,通过命令行pingall就出现了这个包
  • 问题2:开始在过滤后发现找不到58076给6633端口的hello报文 解决方案:取消过滤后找到了,我认为是以为他是open flow vesion 1.5导致的,使得我在openflow_v1找不到

实验收获:

  • 这次实验学会用过滤器输入“OpenFlow_v1和Openflow_v6”等进行数据包过滤,运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
  • 能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制,将抓包结果对照OpenFlow源码,了解到OpenFlow主要消息类型对应的数据结构定义。

标签:struct,OpenFlow,端口,实践,header,ofp,uint16,实验,uint32
From: https://www.cnblogs.com/50qq/p/16729362.html

相关文章

  • 第一次sdn实验
    mininet运行结果a结果图、b结果图修改个人心得:在提前预习ppt的情况下,大部分代码都能正确的输入并且执行;但在完成过程中依旧有一些地方输入代码后没有达到预期效果,发......
  • 实验一
           个人总结:这次实验要求我们理解掌握如何创建网络拓扑,根据老师的指导,实验过程比较顺利,不过后期还是遇到了测试链路带宽出不来结果的问题......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与......
  • 实验1:SDN拓扑实践
    一、实验目的能够使用源码安装Mininet;能够使用Mininet的可视化工具生成拓扑;能够使用Mininet的命令行生成特定拓扑;能够使用Mininet交互界面管理SDN拓扑;能够使用Python......
  • 实验1:SDN拓扑实践
    一.实验目的能够使用源码安装Mininet;能够使用Mininet的可视化工具生成拓扑;能够使用Mininet的命令行生成特定拓扑;能够使用Mininet交互界面管理SDN拓扑;能够使用Python脚......
  • sdn拓扑实验
    实验一:SDN拓扑实验1.使用Mininet可视化工具,生成下图所示的拓扑,并保存拓扑文件名为学号.py2.使用Mininet的命令行生成如下拓扑:3台交换机,每个交换机连接1台主机,3台交换......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验3:OpenFlow协议分析实践
    一.实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二.实验环境Ubuntu20......
  • 实验2_Open vSwitch虚拟交换机实践
    一、实验目的能够对OpenvSwitch进行基本操作;能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;能够通过Mininet的Python代码运行OVS命令,控制网络拓扑中的Open......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......