关于SBT的介绍及学习,请戳这里。
SBT模版:
/*************************************************
数据结构:
SBT(Size Balanced Tree),又称傻逼树;
数据域:
值域key,左孩子left,右孩子right,保持平衡的size;
性质:
每棵子树的大小不小于其兄弟的子树大小;
插入:
插入算法先简单插入节点,然后调用一个维护过程以保持性质;
删除:
删除操作与普通维护size域的二叉查找树相同;
最大值和最小值:
由于SBT本身已经维护了size域;
所以只需用Select(T,1)来求最大值;
Select(T,T.size)求最小值;
其中Select(T,k)函数返回树T在第k位置上的节点值;
**************************************************/
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<climits>
#include<algorithm>
using namespace std;
const int N = 100000;
int key[N], lefts[N], rights[N], size[N];
int u;//根结点
int node;
inline void Left_Rotate(int &x)
{
int k = rights[x];
rights[x] = lefts[k];
lefts[k] = x;
size[k] = size[x];
size[x] = size[lefts[x]] + size[rights[x]] + 1;
x = k;
}
inline void Right_Rotate(int &y)
{
int k = lefts[y];
lefts[y] = rights[k];
rights[k] = y;
size[k] = size[y];
size[y] = size[lefts[y]] + size[rights[y]] + 1;
y = k;
}
void Maintain(int &u, bool flag)//维护
{
if(flag == false)
{
if(size[lefts[lefts[u]]] > size[rights[u]])
Right_Rotate(u);
else
{
if(size[rights[lefts[u]]] > size[rights[u]])
{
Left_Rotate(lefts[u]);
Right_Rotate(u);
}
else return;
}
}
else
{
if(size[rights[rights[u]]] > size[lefts[u]])
Left_Rotate(u);
else
{
if(size[lefts[rights[u]]] > size[lefts[u]])
{
Right_Rotate(rights[u]);
Left_Rotate(u);
}
else return;
}
}
Maintain(lefts[u], false);
Maintain(rights[u], true);
Maintain(u, true);
Maintain(u, false);
}
void Insert(int &u, int v)//插入结点
{
if(u == 0)
{
key[u = ++node] = v;
size[u] = 1;
}
else
{
size[u]++;
if(v < key[u])
Insert(lefts[u], v);
else
Insert(rights[u], v);
Maintain(u, v >= key[u]);
}
}
int Delete(int &u, int v)//删除结点
{
size[u]--;
if( (v == key[u]) || (v < key[u] && lefts[u] == 0) || (v > key[u] && rights[u] == 0) )
{
int r = key[u];
if(lefts[u] == 0 || rights[u] == 0)
u = lefts[u] + rights[u];
else
key[u] = Delete(lefts[u], key[u] + 1);
return r;
}
else
{
if(v < key[u])
return Delete(lefts[u], v);
else
return Delete(rights[u], v);
}
}
int Search(int x, int k)//查询
{
if(x == 0 || k == key[x])
return x;
if(k < key[x])
return Search(lefts[x], k);
else
return Search(rights[x], k);
}
int Select(int u, int k)//返回树在第k位置上的结点值
{
int r = size[lefts[u]] + 1;
if(k == r)
return key[u];
else if(k < r)
return Select(lefts[u], k);
else
return Select(rights[u], k - r);
}
int Successor(int u, int k)//查询结点k的后继
{
if(u == 0)
return k;
if(key[u] <= k)
return Successor(rights[u], k);
else
{
int r = Successor(lefts[u], k);
if(r == k)
return key[u];
else
return r;
}
}
int Predecessor(int u, int k)//查询结点k的前驱
{
if(u == 0)
return k;
if(key[u] >= k)
return Predecessor(lefts[u], k);
else
{
int r = Predecessor(rights[u], k);
if(r == k)
return key[u];
else
return r;
}
}
int Rank(int u, int k)//排名(rank),也叫秩,求整棵树中从大到小排序的第k位元素;
{
if(u==0)
return 1;
if(key[u] >= k)
return Rank(lefts[u], k);
else
return size[lefts[u]] + Rank(rights[u], k) + 1;
}
int main()
{
int n;
scanf("%d",&n);
for(int i=0; i<n; i++)
{
int cmd,x;
scanf("%d%d",&cmd,&x);
switch(cmd)
{
case 1:
Insert(u,x);
break;
case 2:
Delete(u,x);
break;
case 3:
printf("%d\n", Search(u,x));
break;
case 4:
printf("%d\n", Rank(u,x));
break;
case 5:
printf("%d\n", Select(u,x));
break;
case 6:
printf("%d\n", Predecessor(u,x));
break;
case 7:
printf("%d\n", Successor(u,x));
break;
}
}
return 0;
}
标签:return,SBT,lefts,int,rights,Tree,key,Balanced,size From: https://blog.51cto.com/u_16146153/6389002