题目:
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format left_index right_index
, provided that the nodes are numbered from 0 to N−1, and 0 is always the root. If one child is missing, then −1will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
Sample Output:
58 25 82 11 38 67 45 73 42
题目大意:
给出一棵二叉搜索树(给出每个结点的左右孩子),且已知根结点为0,求并且给出应该插入这个二叉搜索树的数值,求这棵二叉树的层序遍历
思路:
将BST所有结点的值进行从小到大排序,就可以得到该BST的中序遍历。
已知树的结构,将这些结点的值按照中序遍历填入结点即可。具体代码如下:
int k = 0; void inorder(int root){ if(root >= n || root < 0)return; inorder(nodes[root].lchild); nodes[root].w = w[k++]; inorder(nodes[root].rchild); }
代码:
#include<stdio.h> #include<iostream> #include<algorithm> #include<queue> using namespace std; int n, k = 0; int w[105]; bool flag = false; struct Node{ int w, lchild, rchild; }nodes[105]; void inorder(int root){ if(root >= n || root < 0)return; inorder(nodes[root].lchild); nodes[root].w = w[k++]; inorder(nodes[root].rchild); } void levelOrder(int root){ queue<int> q; q.push(root); while(!q.empty()){ int tmp = q.front(); q.pop(); if(flag){ printf(" "); }else{ flag = true; } printf("%d", nodes[tmp].w); int left = nodes[tmp].lchild; int right = nodes[tmp].rchild; if(left != -1) q.push(left); if(right != -1)q.push(right); } } int main(){ scanf("%d", &n); for(int i = 0; i < n; i++){ int l,r; scanf("%d%d", &l, &r); nodes[i].lchild = l; nodes[i].rchild = r; } for(int i = 0; i < n; i++){ scanf("%d", &w[i]); } sort(w,w+n); inorder(0); levelOrder(0); return 0; }
标签:Binary,Search,right,int,inorder,Tree,tree,nodes,root From: https://www.cnblogs.com/yccy/p/17422438.html