首页 > 其他分享 >JOISC 2022 题解

JOISC 2022 题解

时间:2023-05-23 09:11:58浏览次数:51  
标签:ac https submission 题解 JOISC2022 JOISC 2022 区间 qoj

JOISC2022 Day1 监狱 Jail

首先我们发现操作一定是给所有人排序,然后按照顺序直接从 \(s_i\) 挪到 \(t_i\),要求是对于 \(i\),所有在它之前挪的 \(t\) 不能在 \(s_i\to t_i\) 上,所有在它之后挪的 \(s\) 不能在 \(s_i\to t_i\) 上。有了这个条件我们就可以 \(O(n^2)\) 建图。但是这样太慢了,考虑优化建图。对于路径 \(i\),\(u\to v\),设 \(u\) 下一个点 \(u'\),\(v\) 前一个点 \(v'\),那么建立点 \(S_1,\dots,S_n\) 和 \(T_1,\dots, T_n\),那么连边 \(T_u\to i\),\(i\to S_u\),\(S_{[u',v]}\to i\),\(i\to T_{[u,v']}\),这个建边可以用树剖线段树优化建图。然后再跑一遍拓扑即可。

https://qoj.ac/submission/105989

JOISC2022 Day1 错误拼写 Misspelling

首先我们转化一下条件。对于条件 \((i,j)\),如果 \(i>j\) 那么就代表 \([j,i]\) 区间内的字符串要么全相等,要么第一段连续段的字符比第二段连续段的要小,称其为第一类限制;如果 \(i<j\) 则代表要么全相等,要么第一段连续段的字符比第二段连续段的字符要大,称其为第二类限制。所以我们考虑对连续段进行 DP。对于连续段 \([l,r]\),如果存在第一类限制的区间 \([L,R]\) 满足 \(l\le L\le i<R\),那么后面接着的连续段的字符一定大于这个连续段。第二类限制同理。\(f(i,c,0/1/2)\) 表示考虑 \([1,i]\),连续段结尾为 \(i\),连续段字符为 \(c\),且 \(i+1\) 开始的连续段的字符没有限制 / \(>c\) / \(<c\)。然后再令 \(g(i,c)\) 表示考虑考虑 \([1,i]\) 且 \(i+1\) 开始的字符为 \(c\) 的方案数。 \(f\) 相当于 \(g\) 的一个区间和,\(g\) 也可以由 \(f\) 求得。复杂度 \(O(26n+n\log n)\)。

https://qoj.ac/submission/106082

JOISC2022 Day2 复制粘贴 3 Copy and Paste 3

对于串 \(S\),如果它的出现位置和一个长度大于它的串 \(T\) 相同,且不存在两个连在一起的 \(S\),那么它就一定没用。于是需要的串的数量一共就 \(O(n)\),暴力建后缀树然后看是否存在两个连在一起的出现次数即可。然后对于两个关键串 \(i,j\),我们令 \(c_{i,j}\) 表示串 \(j\) 在串 \(i\) 中的不重叠的出现次数。令 \(l_i\) 表示 \(i\) 的长度,那么求一次 \(c_{i,j}\) 是 \(O(\frac{l_i}{l_j})\) 复杂度的,于是总共复杂度 \(O(n^2\log n)\)。然后就可以 \(O(n^2)\) 地进行 DP 了,每次枚举上一次 copy 的串即可。

https://qoj.ac/submission/106110

* JOISC2022 Day1 京都观光 Sightseeing in Kyoto

首先需要发现一件事情:有用的 \(a_i\) 一定在下凸壳上,\(b_i\) 同理。凸性的证明可以考虑调整法:对于 \(a_{i,j,k}\) 与 \(b_{x,y}\),要从 \((i,x)\to(k,y)\),发现 \((i,x)\to (j,x)\to (j,y)\to (k,y)\) 会更优当且仅当 \(a_i,a_j,a_k\) 是凸的。

然后我们相当于就是要把两个凸壳并起来,然后最优化一些东西。容易联想到凸壳的闵可夫斯基和。于是我们就按照斜率把它们给归并起来,归并的同时计算答案。

https://qoj.ac/submission/106204

JOISC2022 Day2 团队竞技 Team Contest

考虑直接贪心。我们维护三个堆,堆中分别按 \(x,y,z\) 排序,每次取堆顶。如果存在一个堆顶的元素不符合要求,那么我们发现这个无论怎样都不可能合法了,直接删掉即可。实际操作用 sort 后的数组维护即可。

https://qoj.ac/submission/106292

* JOISC2022 Day3 洒水器 Sprinkler

先是搞了一个 \(O(Qd\log n)\) 的不能通过的做法…然后发现可以分块+猫树变成 \(O(Q\sqrt n+Qd)\)…但是这代码得有 4kb…

实际上有更为简单的办法。考虑维护一些 tag,\(g_{u,d}\) 表示 \(u\) 子树中距离 \(u\) 为 \(d\) 的点的 tag。考虑如下的修改方式:对于 \(u\) 的 \(h\) 阶祖先 \(x\),在 \(g_{u,d-h}\) 和 \(g_{u,d-h-1}\) 处打 tag。这样所有点都会被覆盖到。

https://qoj.ac/submission/106339

* JOISC2022 Day3 蚂蚁与方糖 Ants and Sugar

考虑将二分图最小匹配转化为最大独立集。用 X 表示蟻,O 表示糖,即选择尽量多的点,使得对于任意 X 与 O 之间的距离 \(>L\)。我们考虑 O 形成的一些区间。对于位于区间 \([x,y]\) 的一些 O,需要保证 \([x-L,y+L]\) 中没有 X。若令 \(S\) 表示 O 的前缀和,\(T\) 表示 X 的前缀和,那么我们先假定先选所有 X,那么区间 \((l,r]\) 的 O 的贡献就是 \(S_{r}-S_l-T_{r+L}+T_{l-L}\)。

令 \(x_i=-S_i+T_{i-L}\),\(y_i=S_i-T_{i+L}\),我们相当于就是需要交错地选择一些 \(x,y\),最大化 \(\sum x+y\)。有了这个就可以维护矩阵了,\(f_{0/1,0/1}\) 表示区间中第一个选择的是 \(x/y\),最后一个选择的是 \(x/y\),是可合并的。但是注意到我们每次是一个后缀的修改,不是很好做。但是我们再仔细看一看修改的形式。若插入一个 O,那么就是后缀 \(x_i-a\),\(y_i+a\),这对一个状态的贡献只和 \(x/y\) 数量差有关,而数量差只会是 \(0/1\) 这个信息已经维护出来了,所以可以直接打 tag 修改。若插入一个 X,那么可以拆分成一个后缀 \(x_i+a\),\(y_i-a\) 和一个区间 \(y_i-a\)。注意到这个区间是 \([x-L,x+L-1]\),长度 \(\le 2L\),所以只会有不超过 \(2\) 个 \(y\)(即最多只有一个整区间),所以可以再对于 \(\le 2L\) 的区间的状态记录 \(y\) 数量即可。

这个做法比较卡常,把转移手动循环展开了。然后把全 0 的给特判掉了。

https://qoj.ac/submission/106588

JOISC2022 Day4 一流团子师傅 Super Dango Maker

发现询问次数只有 \(nm\log m\)。考虑动态维护每个串 \(S_i\),每次我们将目前的串加入编号最小的,可以加入的串,这样的话就保证了串的单调性,即 \(S_{i+1}\subseteq S_{i}\),于是每次就可以二分。这个条件即对于所有 \(j<i\),\(a_i\in S_j\)。也就是集合 \(S_i\cup\dots\cup S_m\cup \{a_{i+1},\dots,a_n\}\) 中,距离 \(m-i+1\) 个串恰好少一个 \(a_i\)。所以我们每次在二分时问这样的集合即可。

https://qoj.ac/submission/107628

* JOISC2022 Day4 鱼 2 Fish 2
* JOISC2022 Day4 复兴计划 Reconstruction Project

首先注意到每条边的贡献时间一定是一段区间 \([l,r]\),又由于点数很少,所以可以暴力维护边的删和加。但是看上去很难直接维护得知哪些边要加哪些边要删,所以我们考虑不对时间扫,而对边扫。先建出最小生成树后,从小到大扫边,每次看这条边 \(i\) 形成的环上的最小边 \(j\),并把它给替换了,并记录更改时间 \(r_j=l_i=\frac{w_i+w_j}{2}\)。复杂度 \(O(nm+(m+q)\log m)\)。

https://qoj.ac/submission/107902

标签:ac,https,submission,题解,JOISC2022,JOISC,2022,区间,qoj
From: https://www.cnblogs.com/TetrisCandy/p/17422304.html

相关文章

  • abc271_e Subsequence Path 题解
    SubsequencePath题意有\(n\)个城市和\(m\)条有向道路,编号从\(1\)开始,第\(i\)条道路从\(a_i\)到\(b_i\),长度为\(c_i\)。给定一个长度为\(k\)的序列\(e\),我们定义从\(1\)到\(n\)的一条路径是优秀的当且仅当:经过的边的编号按顺序构成\(e\)的一个子序列。......
  • NOIP2016普及组试题题解
    1.买铅笔代码:#include<bits/stdc++.h>#definelllonglongusingnamespacestd;intn,ans=1e9,a,b;intmain(){ cin>>n; for(inti=1;i<=3;i++){ cin>>a>>b; ans=min(ans,int(ceil(n*1.0/a)*b)); } cout<<ans; return0;}......
  • CF1770F 题解
    \(\text{link}\)。很困难的二进制计数。前置知识\(1\):范德蒙德卷积推广。即\(\sum\limits_{a_1+a_2+\dots+a_n=k,a_i\in\N}\prod\limits_{j=1}^n\dbinom{b_i}{a_i}=\dbinom{b_1+b_2+\dots+b_n}{k}\)。这里给一个组合意义的证明。\(RHS\)相当于在\(\sumb_i\)个物品中选......
  • Atcoder Beginner Contest ABC302 题解
    代码见此:https://atcoder.jp/contests/abc302/submissions?f.Task=&f.LanguageName=&f.Status=&f.User=frequenter。AAttackhttps://atcoder.jp/contests/abc302/tasks/abc302_a直接计算a/b,有余数的话答案加一。BFindSnukehttps://atcoder.jp/contests/abc302/tasks/abc......
  • 在 Windows Server 2022 中,微软取消了一些以前的功能。以下是一些被取消的功能
    在WindowsServer2022中,微软取消了一些以前的功能。以下是一些被取消的功能:InternetStorageNameService(iSNS):iSNS是一个网络服务协议,为iSCSI设备提供自动发现和配置。在WindowsServer2022中,iSNS被取消了,建议使用其他的自动发现和配置方法。PeerNameResolu......
  • NOIP2017普及组试题题解
    1.成绩原题:https://www.luogu.com.cn/problem/P3954代码:#include<bits/stdc++.h>#definelllonglongusingnamespacestd;inta,b,c;intmain(){ cin>>a>>b>>c; cout<<a/10*2+b/10*3+c/10*5; return0;}解题思路:因为数据保证a,b,c都是10的......
  • 在Windows Server 2022中使用Microsoft Deployment Toolkit(MDT)时,Bootstrap.ini文件是
    在WindowsServer2022中使用MicrosoftDeploymentToolkit(MDT)时,Bootstrap.ini文件是用于启动和定制Windows预安装环境(WinPE)的关键文件。以下是常见的Bootstrap.ini参数及其描述:[Settings]:指定设置组。Priority:指定Bootstrap.ini的优先级,以确定哪个Bootstrap.ini文件将被使用(如......
  • Windows server 2022 个人使用 优化批处理batch
    Windowsserver2022个人使用一些优化@echooffregadd"HKLM\SOFTWARE\Microsoft\ActiveSetup\InstalledComponents\{A509B1A7-37EF-4b3f-8CFC-4F3A74704073}"/v"IsInstalled"/tREG_DWORD/d00000000/fregadd"HKLM\SOFTWARE\Microsof......
  • 在Windows Server 2022中使用Microsoft Deployment Toolkit(MDT)时,可使用Rules(规则)文件
    在WindowsServer2022中使用MicrosoftDeploymentToolkit(MDT)时,可使用Rules(规则)文件来配置和自定义部署过程。以下是常见的Rules参数及其描述:UserDomain:指定要加入的域的名称。UserID和UserPassword:指定加入域所需的管理员帐户凭据。TimeZoneName:指定安装期间使用的时区。Jo......
  • 【DSP视频教程】DSP视频教程第12期:TI开源分享IQmath DSP源码,适用于所有Cortex-M内核,本
    视频教程汇总帖:https://www.armbbs.cn/forum.php?mod=viewthread&tid=110519 今年TI推出MSPM0系列产品配套的SDK软件包里面将此库开源了,之前的时候也移植过IQmatb,不过只有库版本,这次竟然开源了,确实是不可多得的好资源。这个是定点库,非常适合用于M0,  M0+,  M3和不带硬件F......