首页 > 其他分享 >分布式系统常见问题

分布式系统常见问题

时间:2023-05-13 10:23:48浏览次数:38  
标签:常见问题 db 用户 order 分布式系统 时钟 节点 客户端

一.概述

分布式系统存在网络,时钟,以及许多不可预测的故障。分布式事务,一致性与共识问题,迄今为止仍没有得到很好的解决方案。要想完美地解决分布式系统中的问题不太可能,但是实践中应对特定问题仍有许多可靠的解决方案。本文不会谈及诸如BASE, CAP, ACID 等空泛的理论,只基于实践中遇到的问题提出可行的解决方案。

二.常见问题

1.读自己的写

现象: 用户在发布页发布了帖子,然后访问自己的主页查看帖子列表,并没有马上看到自己刚刚发布的帖子,等待1~2s后才看到

分析:后端db采取主从结构,复制任务在负载较高的情况下会有延迟。用户读取帖子列表查询的是从节点,所以无法及时看到刚刚发布的帖子。一般情况下延迟1~2s是可以接受的,但是为了更好的体验,可以做一些改进。

解决方案:

  • 如果用户读取的是自己的主页,就访问主节点。如果访问是他人的主页,就访问从节点。只需要在db层路由即可。
  • 客户端还可以记住最近更新时的时间戳,并附带在读请求中,据此信息,系统可以确保对该用户提供读服务时都应该至少包含了该时间戳的更新。如果不够新,要么交由另一个副本来处理,要么等待直到副本接收到了最近的更新

2.单调读

现象:用户查看某个帖子下面的评论,一会儿看到5条评论,一会儿看到6条评论。

分析:后端db采取主从结构,复制任务在负载较高的情况下会有延迟。用户读取评论列表查询的是从节点,但是两次读的是不同的从节点,当某个从节点具有明显延迟就会出现数据反复的现象。

解决方案:

  • 确保同一个用户每次都是读取同一个副本,可以在db层进行路由。这是一种典型的sticky 请求路由。

    replica = hash(user_id) % number_of_replica

3.负载倾斜与热点问题

现象:某个分区的数据明显比其他分区多,并且访问频率高,负载压力大。

分析:在某些特殊的业务场景下,比如官方或者名人账号有百万粉丝,当这些账号发布消息事件时,人们会对该消息进行评论,如果评论数据存储使用事件id进行hash,就会造成某个分区的负载产生倾斜。

解决:

  •   在关键词,比如消息事件id,的开头或者结尾添加一个随机数。只需一个两位数的十进制随机数就可以将关键字的写做操作分布到100个不同的关键字上,从而分片到不同的分区上。这些特殊逻辑只应用在一些特殊账号上。

4.fencing令牌

现象:在采用分布式锁的情况下,数据库中的事务重复执行。

分析:在分布式锁环境中,客户端A执行事务超时,分布式锁被释放。客户端B执行事务插入数据。客户端A恢复后继续执行事务,重复插入数据。

解决方案:

  • 这不是分布式事务的范畴。可以采用fencing令牌来解决。我们假设每次锁服务授予锁或租约时,同时还会返回一个fencing令牌,该令牌每授予一次就会递增。然后,要求客户端每次向存储系统发生写请求时,都必须包含所持有的fencing令牌。当使用zookeeper 作为锁服务时,可以用事务标识zxid,或节点版本cversion来充当fencing令牌,这两个都可以满足单调递增的要求。

5.Lamport时间戳

现象:客户端从两个分区获取两条不同的数据,比如事件a, b;a的序号小于b,但事实上b比a先发生。

分析:常见的有以下几种非因果序列发生器,产生的序列号与因果关系并不严格一致。

  • 每个节点单独产生自己的一组序列号。
  • 把墙上时间戳信息(物理时钟)附加在每个操作上。
  • 预先分配好序列号的区间范围,比如节点A负责区间1~1000的序列号,节点B负责1001~2000。

解决方案:

  • 使用Lamport时间戳。Lamport时间戳是一个kv对(计数器,节点ID)。核心流程:每个节点以及每个客户端都跟踪迄今为止所见到的最大计数器,并在每个请求中附带该最大计数器值。当节点收到请求(或者回复)时,如果发现请求内嵌的最大计数器大于节点自身的计数器,则它立即把自己的计数器修改为该最大值。

    

6.端到端的重复消除问题

现象:消息重复是非常普遍的,比如

  • 生产者发送消息到消费者,消费者消费成功后宕机,但是却没有更新消费位置,消费者重启后就会重新消费。
  • 常见的rpc调用,调用方因为网络问题没有收到被调用方的响应,选择重试。
  • 2PC 分布式事务中,因为网络问题,也可能出现重复事务的问题。
  • 用户在页面重复提交POST请求。

分析:端到端的重复问题是非常普遍的,在TCP 网络中也需要处理重复数据包的问题。有以下两种解决办法:

  • 最有效的办法之一是使操作满足幂等性,即无论执行一次还是多次,确保具有相同的结果。比如以下语句无论执行多少次效果都是一致的。

   update table set v = v2 where v = v1

  • 可以为操作生成一个唯一的标识符如(UUID),服务端对此UUID 进行去重校验。

  

  • 在典型的电商下单接口中采用了以上两种方法的结合:使用唯一标识符来进行去重,如果写入异常返回之前的订单。
create table order(
  # ...
  dedup_key varchar(60) not null comment 'key to pretend order duplication',
  client_id,
  # ...
  unique uniq_dedup_key(dedup_key, client_id)
);


@Transactional
Order createOrder(Integer userId, String prodCode, Decimal amount, String dedupKey) {
  try {
    String orderId = createOrder(userId, prodCode, amount, deupKey); // insert a new order
    Order order = getOrderById(orderId); // read order from db
    order.setDuplicated(false); // 标记是否有重复下单
    return order;
  } catch(UniqueKeyViolationException e) {
    // if duplicated order has existed, return previous order
    Order order = getOrderByDedupKey(dedupKey, clientId);
    order.setDuplicated(true);
    return order;
  } catch (Exception e) {
    // hanlde other errors and rollback transaction ...
  }
}

7.唯一性约束

现象:在集群高并发的环境下,用户A创建用户marquezzzz,用户B同时创建了用户marquezzzz,两者的用户名相同,这违背了唯一性约束。

分析:创建用户名的逻辑是,先去db中查询是否有对应的用户名(步骤1),如果没有就创建,如果存在就更新用户的其他信息(步骤2)。用户A执行了步骤1, 用户B执行了步骤1和2,然后用户A执行了步骤2,这样生成了两个同名的用户。

解决方案:

  • 串行化请求,将创建用户的请求串行化,比如发送到队列中,这样可以确保全局唯一性。
  • 在db层进行唯一性约束,比如使用唯一索引,考虑到庞大的数据量,性能会下降。如果做了分表,唯一索引的方法也不太可行。
  • 使用分布式锁,比如redis, zookeeper,redis伪代码如下:
boolean r = redisClient.setnx("userName", currentThread, 10s); // 使用 setnx 原子命令
if (!r) {
    return false;
}

// 步骤1 查找db确保没有重名

// 步骤2 插入用户

redisClient.delete("userName");

8.时钟问题

现象:在许多app中,客户端会上报事件,但是事件的发生时间不准确

分析:app客户端时钟可能不准确,或者用户手动调整过系统时钟。

解决方案:

为了调整不正确的设备时钟,一种方法是记录三个时间戳:

  1. 根据设备的时钟,记录事件发生的时间, device_event_time
  2. 根据设备的时钟,记录将事件发生到服务器的时间, device_send_time
  3. 根据服务器时钟,记录服务器收到事件的时间, server_receive_time

事件真实发生时间 = device_event_time + (server_receive_time - device_send_time)

三.参考

《数据密集型应用系统设计》

https://cloud.tencent.com/developer/article/1121727

标签:常见问题,db,用户,order,分布式系统,时钟,节点,客户端
From: https://www.cnblogs.com/darcy-yuan/p/17394181.html

相关文章

  • Windows 安装 pycrypto 常见问题解决
    关于python使用Crypto.Cipher模块,ImportError:Nomodulenamed'Crypto' 常见问题解决1. 需要安装:MicrosoftVisualC++14.0error:MicrosoftVisualC++14.0isrequired.Getitwith"MicrosoftVisualC++BuildTools":http://landinghub.visualstudio.co......
  • 复旦大学高等代数三件套及其常见问题的回答
    复旦大学高等代数三件套(1)复旦大学高等代数教材介绍(使用本教材的高校列表会更新)https://www.cnblogs.com/torsor/p/16843108.html(2)复旦大学高等代数白皮书第四版介绍https://www.cnblogs.com/torsor/p/16840476.html(3)复旦大学高等代数习题集(每年9月初会更新版本及其下载地址)......
  • java常见问题
    java.lang.OutOfMemoryError:Javaheapspace 解决问题之前先来分析一下为什么会出现内存溢出的问题.有两种可能性:一种是应用有问题,本该回收的内存没有进行回收导致的内存溢出,这种情况就需要修改代码了.第二种情况则是服务器资源不够或JVM参数设置过小导致的内存溢出,......
  • VUE常见问题,持续更新
    最新接触VUE3,作为新手在使用TS语法时经常会遇到一些各种各样的问题,在些做个归纳。1.直接引用.json文件最报错TS2732:Cannotfindmodule'@/data.json'.Considerusing'--resolveJsonModule'toimportmodulewith&:在tsconfig.json中添加 "resolveJsonModule":true,......
  • 分布式系统唯一ID生成方案汇总
    系统唯一ID是我们在设计一个系统的时候常常会遇见的问题,也常常为这个问题而纠结。生成ID的方法有很多,适应不同的场景、需求以及性能要求。所以有些比较复杂的系统会有多个ID生成的策略。下面就介绍一些常见的ID生成策略。1.数据库自增长序列或字段最常见的方式。利用数据库,全数......
  • 分布式系统复习
    这啥玩意都没讲的课要考了。。。1.云计算与大数据1.1云计算的3个服务模型IaaS,基础设施即服务PaaS,平台即服务SaaS,软件即服务云计算的3中服务模型之间的关系:IaaS提供虚拟化的硬件资源,支撑PaaS对平台的虚拟化,而PaaS又支撑了SaaS对软件的虚拟化。1.2DIKW体系Data(数据)、Info......
  • 常见问题——关于.net WebApi使用Swagger报错:HTTP Error 403.14 - Forbidden
    问题:.netWebApi项目使用Swagger报错:HTTPError403.14-Forbidden解放方案:换一个端口即可推荐——删除解决方案下的.vs文件夹,重新生成即可参考:https://stackoverflow.com/questions/34970088/swagger-gives-me-http-error-403-14-forbidden/53863456......
  • PLC写保护,人机写保护等常见问题汇集
    1、冲床 ,把模块改一下,就可以读写。设备改造,就会遇到别人丢的摊子,要去整理。 2、人机也有保护,不让上传到PC,需要密码等,或者上传了,不能编辑。 ......
  • MAUI Blazor 常见问题
    目录WebView键盘遮挡输入框解决方案-AndroidWebView键盘遮挡输入框解决方案-Android在AndroidManifest.xml的application中添加android:windowSoftInputMode="adjustResize"......
  • Java基础之String字符串的底层原理,面试常见问题
    前言在之前的两篇文章中,给大家介绍了String字符串及其常用的API方法、常用编码、正则表达式等内容,但这些内容都是停留在”如何用“的阶段,没有涉及到”为什么“的层面。实际上,我们在求职时,面试官很喜欢问我们关于String的一些原理性知识,比如String的不可变性、字符串的内存分配等......