首页 > 其他分享 >AtCoder Beginner Contest 298 题解

AtCoder Beginner Contest 298 题解

时间:2023-05-11 18:00:14浏览次数:50  
标签:__ AtCoder gnu int 题解 tree pbds 298 include

题面:https://atcoder.jp/contests/abc298/tasks_print

A - Job Interview

直接模拟即可。

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/hash_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#ifdef LOCAL
#include "algo/debug.h"
#else
#define debug(...) 42
#endif
typedef long long ll;
typedef pair < int, int > PII;
typedef int itn;
mt19937 RND_MAKER (chrono :: steady_clock :: now ().time_since_epoch ().count ());
inline ll randomly (const ll l, const ll r) {return (RND_MAKER () ^ (1ull << 63)) % (r - l + 1) + l;}
//#define int long long
const double pi = acos (-1);
//__gnu_pbds :: tree < Key, Mapped, Cmp_Fn = std :: less < Key >, Tag = rb_tree_tag, Node_Upadte = null_tree_node_update, Allocator = std :: allocator < char > > ;
//__gnu_pbds :: tree < PPS, __gnu_pbds :: null_type, less < PPS >, __gnu_pbds :: rb_tree_tag, __gnu_pbds :: tree_order_statistics_node_update > tr;
inline int read () {
	int x = 0, f = 0;
	char c = getchar ();
	for ( ; c < '0' || c > '9' ; c = getchar ()) f |= (c == '-');
	for ( ; c >= '0' && c <= '9' ; c = getchar ()) x = (x << 1) + (x << 3) + (c & 15);
	return !f ? x : -x;
}
int n, o, x;
char s[105];
signed main () {
	n = read ();
	scanf ("%s", s + 1);
	for (int i = 1;i <= n; ++ i) {
		o += (s[i] == 'o');
		x += (s[i] == 'x');
	}
	if (o > 0 && x == 0) printf ("Yes\n");
	else printf ("No\n");
	return 0;
}

B - Coloring Matrix

因为旋转 \(4\) 次后就会变成原样,所以只需要模拟十次甚至九次即可。

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/hash_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#ifdef LOCAL
#include "algo/debug.h"
#else
#define debug(...) 42
#endif
typedef long long ll;
typedef pair < int, int > PII;
typedef int itn;
mt19937 RND_MAKER (chrono :: steady_clock :: now ().time_since_epoch ().count ());
inline ll randomly (const ll l, const ll r) {return (RND_MAKER () ^ (1ull << 63)) % (r - l + 1) + l;}
//#define int long long
const double pi = acos (-1);
//__gnu_pbds :: tree < Key, Mapped, Cmp_Fn = std :: less < Key >, Tag = rb_tree_tag, Node_Upadte = null_tree_node_update, Allocator = std :: allocator < char > > ;
//__gnu_pbds :: tree < PPS, __gnu_pbds :: null_type, less < PPS >, __gnu_pbds :: rb_tree_tag, __gnu_pbds :: tree_order_statistics_node_update > tr;
inline int read () {
	int x = 0, f = 0;
	char c = getchar ();
	for ( ; c < '0' || c > '9' ; c = getchar ()) f |= (c == '-');
	for ( ; c >= '0' && c <= '9' ; c = getchar ()) x = (x << 1) + (x << 3) + (c & 15);
	return !f ? x : -x;
}
int a[105][105], b[105][105], c[105][105], n;
inline void rotate () {
	for (int i = 1;i <= n; ++ i) {
		for (int j = 1;j <= n; ++ j) {
			c[n - j + 1][i] = a[i][j];
		}
	}
	for (int i = 1;i <= n; ++ i) {
		for (int j = 1;j <= n; ++ j) {
			a[i][j] = c[i][j];
		}
	}
}
inline bool check () {
	for (int i = 1;i <= n; ++ i) {
		for (int j = 1;j <= n; ++ j) {
			if (b[i][j] == 0 && a[i][j] == 1) return false;
		}
	}
	return true;
}
signed main () {
	n = read ();
	for (int i = 1;i <= n; ++ i) {
		for (int j = 1;j <= n; ++ j) {
			a[i][j] = read ();
		}
	}	
	for (int i = 1;i <= n; ++ i) {
		for (int j = 1;j <= n; ++ j) {
			b[i][j] = read ();
		}
	}	
	for (int i = 0;i < 10; ++ i) {
		if (check ()) {
			printf ("Yes\n");
			return 0;
		} 
		rotate ();
	}
	printf ("No\n");
	return 0;
}

C - Cards Query Problem

每个盒子可以用 std :: priority_queue 维护,每张卡片因为要去重就用 std :: set 维护即可。

有点坑,如果不用 set 去重的话就会 TLE。

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/hash_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#ifdef LOCAL
#include "algo/debug.h"
#else
#define debug(...) 42
#endif
typedef long long ll;
typedef pair < int, int > PII;
typedef int itn;
mt19937 RND_MAKER (chrono :: steady_clock :: now ().time_since_epoch ().count ());
inline ll randomly (const ll l, const ll r) {return (RND_MAKER () ^ (1ull << 63)) % (r - l + 1) + l;}
//#define int long long
const double pi = acos (-1);
//__gnu_pbds :: tree < Key, Mapped, Cmp_Fn = std :: less < Key >, Tag = rb_tree_tag, Node_Upadte = null_tree_node_update, Allocator = std :: allocator < char > > ;
//__gnu_pbds :: tree < PPS, __gnu_pbds :: null_type, less < PPS >, __gnu_pbds :: rb_tree_tag, __gnu_pbds :: tree_order_statistics_node_update > tr;
inline int read () {
	int x = 0, f = 0;
	char c = getchar ();
	for ( ; c < '0' || c > '9' ; c = getchar ()) f |= (c == '-');
	for ( ; c >= '0' && c <= '9' ; c = getchar ()) x = (x << 1) + (x << 3) + (c & 15);
	return !f ? x : -x;
}
priority_queue < int, vector < int >, greater < int > > box[200005];
set < int > card[200005];
inline void th2 (priority_queue < int, vector < int >, greater < int > > qwq) {
	priority_queue < int, vector < int >, greater < int > > tmp = qwq;
	while (!tmp.empty ()) {
		int x = tmp.top ();
		printf ("%d ", x);
		tmp.pop ();
	}
	printf ("\n");
} 
inline void th3 (int xd) {
	vector < int > need;
	need.clear ();
	for (auto x : card[xd]) need.push_back (x);
	sort (need.begin (), need.end ());
	for (auto x : need) printf ("%d ", x);
	printf ("\n");
} 
signed main () {
	int n = read (), q = read ();
	while (q --) {
		int op = read ();
		if (op == 1) {
			int x = read (), y = read ();
			if (card[x].find (y) == card[x].end ()) card[x].insert (y); 
			box[y].push (x);
		}
		else if (op == 2) {
			int x = read ();
			th2 (box[x]);
		}
		else {
			int x = read ();
			th3 (x);
		}
	}
	return 0;
}

D - Writing a Numeral

数学题一道。

我们将数的每一位用 vector 维护,模 \(998244353\) 的值用一个变量 \(S\) 维护,用一个指针指向 vector 的表头。

操作 1:\(10S + x \to S\),vector 后面插入 \(x\)。

操作 2:设 vector 的表头为 \(x\),取出之后将指针右移一位,并前去最高位对应的值即可。

操作 3:无脑输出。

感觉就是水题一道,关键在于取模之后还要进行特殊的处理(x = (x % mod + mod) % mod;),某人(不是我)因为这个 WA 了。

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/hash_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#ifdef LOCAL
#include "algo/debug.h"
#else
#define debug(...) 42
#endif
typedef long long ll;
typedef pair < int, int > PII;
typedef int itn;
mt19937 RND_MAKER (chrono :: steady_clock :: now ().time_since_epoch ().count ());
inline ll randomly (const ll l, const ll r) {return (RND_MAKER () ^ (1ull << 63)) % (r - l + 1) + l;}
#define int long long
const double pi = acos (-1);
//__gnu_pbds :: tree < Key, Mapped, Cmp_Fn = std :: less < Key >, Tag = rb_tree_tag, Node_Upadte = null_tree_node_update, Allocator = std :: allocator < char > > ;
//__gnu_pbds :: tree < PPS, __gnu_pbds :: null_type, less < PPS >, __gnu_pbds :: rb_tree_tag, __gnu_pbds :: tree_order_statistics_node_update > tr;
inline int read () {
	int x = 0, f = 0;
	char c = getchar ();
	for ( ; c < '0' || c > '9' ; c = getchar ()) f |= (c == '-');
	for ( ; c >= '0' && c <= '9' ; c = getchar ()) x = (x << 1) + (x << 3) + (c & 15);
	return !f ? x : -x;
}
inline int ksm (int a, int b, int p) {
	int res = 1;
	while (b) {
		if (b & 1) res = res * a % p;
		b >>= 1;
		a = a * a % p;
	}
	return res;
}
const int mod = 998244353;
int cur = 1, i10, q, pw10[600010], siz, head = 0;
vector < int > ary;
signed main () {
	pw10[0] = 1;
	for (int i = 1;i <= 6e5 + 5; ++ i) pw10[i] = pw10[i - 1] * 10 % mod;
	ary.push_back (1); siz = 1;
	i10 = ksm (10, mod - 2, mod);
	q = read ();
	while (q --) {
		int op = read ();
		if (op == 1) {
			int x = read ();
			ary.push_back (x);
			cur = (cur * 10 + x) % mod;
			siz ++;
		}
		else if (op == 2) {
			int x = ary[head];
			head ++;
			siz --;
			cur -= x * pw10[siz] % mod;
			cur = (cur % mod + mod) % mod;
		}
		else {
			printf ("%lld\n", cur);
		}
	}
	return 0;
}

E - Unfair Sugoroku

比较裸的一道概率 dp。

设 \(f_{A,B,0/1}\) 为当前 Ta. 在 \(A\),Ao. 在 \(B\),\(0\) 表示该 Ta. 走,\(1\) 表示该 Ao. 走,Ta. 胜利的概率。

然后枚举 Ta. / Ao. 掷出的值,直接按概率 dp 转移即可。

边界条件:\(f_{N,x,0}=f_{N,x,1}=1,f_{x,N,0}=f_{x,N,1}=0(1 \leq x < N)\)。

感觉这道题还是比较容易想,一遍就过了样例,一遍就 AC 了,还是比较的经典的。

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/hash_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#ifdef LOCAL
#include "algo/debug.h"
#else
#define debug(...) 42
#endif
typedef long long ll;
typedef pair < int, int > PII;
typedef int itn;
mt19937 RND_MAKER (chrono :: steady_clock :: now ().time_since_epoch ().count ());
inline ll randomly (const ll l, const ll r) {return (RND_MAKER () ^ (1ull << 63)) % (r - l + 1) + l;}
#define int long long
const double pi = acos (-1);
//__gnu_pbds :: tree < Key, Mapped, Cmp_Fn = std :: less < Key >, Tag = rb_tree_tag, Node_Upadte = null_tree_node_update, Allocator = std :: allocator < char > > ;
//__gnu_pbds :: tree < PPS, __gnu_pbds :: null_type, less < PPS >, __gnu_pbds :: rb_tree_tag, __gnu_pbds :: tree_order_statistics_node_update > tr;
inline int read () {
	int x = 0, f = 0;
	char c = getchar ();
	for ( ; c < '0' || c > '9' ; c = getchar ()) f |= (c == '-');
	for ( ; c >= '0' && c <= '9' ; c = getchar ()) x = (x << 1) + (x << 3) + (c & 15);
	return !f ? x : -x;
}
const int mod = 998244353;
inline int ksm (int a, int b, int p) {
	int res = 1;
	while (b) {
		if (b & 1) res = res * a % p;
		b >>= 1;
		a = a * a % p;
	}
	return res;
}
int f[105][105][2], g[105][105][2], n, a, b, p, q, ip, iq;
inline int dfs (int A, int B, int type) {
	if (g[A][B][type]) return f[A][B][type];
	g[A][B][type] = 1;
	if (type == 0) {
		int ans = 0;
		for (int i = 1;i <= p; ++ i) {
			int goal = min (A + i, n);
			ans = (ans + dfs (goal, B, type ^ 1) * ip % mod) % mod;
		}
		return f[A][B][type] = ans;
	}
	else {
		int ans = 0;
		for (int i = 1;i <= q; ++ i) {
			int goal = min (B + i, n);
			ans = (ans + dfs (A, goal, type ^ 1) * iq % mod) % mod;
		}
		return f[A][B][type] = ans;
	}
}
signed main () {
	n = read (), a = read (), b = read (), p = read (), q = read ();
	ip = ksm (p, mod - 2, mod), iq = ksm (q, mod - 2, mod);
	for (int i = 1;i < n; ++ i) {
		f[n][i][0] = 1, g[n][i][0] = 1;
		f[i][n][0] = 0, g[n][i][0] = 1;
		f[n][i][1] = 1, g[n][i][1] = 1;
		f[i][n][1] = 0, g[n][i][1] = 1;
	}
	printf ("%lld\n", dfs (a, b, 0));
	return 0;
}

F - Rook Score

枚举所有有点的列(\((R,C)\) 就选自这一列),用一个线段树维护所有有点的行的权值之和,只需要在计算每行的答案的时候减掉这一行对应的点的权值即可。

这道题感觉不难想,就是代码难写了一点(可能是我的思路问题),赛时因为数组开小了 2 倍 WA 了一发。

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/hash_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#ifdef LOCAL
#include "algo/debug.h"
#else
#define debug(...) 42
#endif
typedef long long ll;
typedef pair < int, int > PII;
typedef int itn;
mt19937 RND_MAKER (chrono :: steady_clock :: now ().time_since_epoch ().count ());
inline ll randomly (const ll l, const ll r) {return (RND_MAKER () ^ (1ull << 63)) % (r - l + 1) + l;}
#define int long long
const double pi = acos (-1);
//__gnu_pbds :: tree < Key, Mapped, Cmp_Fn = std :: less < Key >, Tag = rb_tree_tag, Node_Upadte = null_tree_node_update, Allocator = std :: allocator < char > > ;
//__gnu_pbds :: tree < PPS, __gnu_pbds :: null_type, less < PPS >, __gnu_pbds :: rb_tree_tag, __gnu_pbds :: tree_order_statistics_node_update > tr;
inline int read () {
	int x = 0, f = 0;
	char c = getchar ();
	for ( ; c < '0' || c > '9' ; c = getchar ()) f |= (c == '-');
	for ( ; c >= '0' && c <= '9' ; c = getchar ()) x = (x << 1) + (x << 3) + (c & 15);
	return !f ? x : -x;
}
int n, rc[400005], r[200005], c[200005], w[200005];
int mx[1600005], inc[1600005];
inline void push_up (int u) {mx[u] = max (mx[u << 1], mx[u << 1 | 1]);}
inline void push_down (int u) {
	if (inc[u] == 0) return ;
	inc[u << 1] += inc[u], inc[u << 1 | 1] += inc[u];
	mx[u << 1] += inc[u], mx[u << 1 | 1] += inc[u];
	inc[u] = 0;
}
inline void build (int u, int l, int r) {
	inc[u] = 0;
	if (l == r) return ;
	int mid = l + r >> 1;
	build (u << 1, l, mid), build (u << 1 | 1, mid + 1, r);
	push_up (u);
}
inline void modify (int u, int l, int r, int x, int y, int v) {
	if (x <= l && r <= y) {
		mx[u] += v;
		inc[u] += v;
		return ;
	}
	push_down (u);
	int mid = l + r >> 1;
	if (x <= mid) modify (u << 1, l, mid, x, y, v);
	if (y > mid) modify (u << 1 | 1, mid + 1, r, x, y, v);
	push_up (u);
}
inline int query (int u, int l, int r, int x, int y) {
	if (x <= l && r <= y) return mx[u];
	push_down (u);
	int mid = l + r >> 1, ans = 0;
	if (x <= mid) ans = max (ans, query (u << 1, l, mid, x, y));
	if (y > mid) ans = max (ans, query (u << 1 | 1, mid + 1, r, x, y));
	return ans;
}
map < int, int > mp;
int qwq[400005];
vector < int > R[400005], C[400005]; 
signed main () {
	n = read ();
	for (int i = 1;i <= n; ++ i) {
		r[i] = read (), c[i] = read (), w[i] = read ();
		rc[i] = r[i], rc[i + n] = c[i];
	}
	sort (rc + 1, rc + 1 + 2 * n);
	for (int i = 1;i <= 2 * n; ++ i) {
		if (rc[i] != rc[i - 1]) mp[rc[i]] = mp[rc[i - 1]] + 1;
	}
	int m = mp[rc[2 * n]];
	build (1, 1, m);
	for (int i = 1;i <= n; ++ i) {
		r[i] = mp[r[i]];
		c[i] = mp[c[i]];
		R[r[i]].push_back (i);
		C[c[i]].push_back (i);
	}
	for (int i = 1;i <= n; ++ i) {
		qwq[r[i]] += w[i];
	}
	for (int i = 1;i <= m; ++ i) modify (1, 1, m, i, i, qwq[i]);
	int ans = -9e18;
	for (int i = 1;i <= m; ++ i) {
		int tot = 0;
		for (int x : C[i]) modify (1, 1, m, r[x], r[x], -w[x]), tot += w[x];
		ans = max (ans, tot + query (1, 1, m, 1, m));
		for (int x : C[i]) modify (1, 1, m, r[x], r[x], w[x]);
	}
	printf ("%lld\n", ans);
	return 0;
}

G - Strawberry War

个人感觉这道题思维难度不算太大,但代码非常难写()。

首先要枚举一个值(一定要是某个子矩形的和)\(x\),表示分割成的每个子矩形的和的下限

那么对于这个值(\(x\)),答案就是分割成的子矩形的和的最大值减去 \(x\)(如果 \(x\) 没有出现,那么 \(x\) 还可以更大)。

那么我们可以考虑进行 dp,设 \(f_{x,Lx,Rx,Ly,Ry}\) 表示对子矩形 \(((Lx,Rx),(Ly,Ry))\) 切了 \(x\) 刀后的最大值(当然也可以存减去 \(x\) 的值的最大值),那么就枚举一下切的位置,枚举一下切出来的两个子矩形内部各切了多少刀,两者取个 max 转移即可。

赛时就是想二分最小值,就做不出来了()。

可以发现最小值一定是某个子矩形的和,每次做一个 dp 就做出来了。

思想还是挺妙的,但是也不是特别难想,正确性显然()。

吐槽一下代码有点难写()。

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/hash_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#ifdef LOCAL
#include "algo/debug.h"
#else
#define debug(...) 42
#endif
typedef long long ll;
typedef pair < int, int > PII;
typedef int itn;
mt19937 RND_MAKER (chrono :: steady_clock :: now ().time_since_epoch ().count ());
inline ll randomly (const ll l, const ll r) {return (RND_MAKER () ^ (1ull << 63)) % (r - l + 1) + l;}
#define int long long
const double pi = acos (-1);
//__gnu_pbds :: tree < Key, Mapped, Cmp_Fn = std :: less < Key >, Tag = rb_tree_tag, Node_Upadte = null_tree_node_update, Allocator = std :: allocator < char > > ;
//__gnu_pbds :: tree < PPS, __gnu_pbds :: null_type, less < PPS >, __gnu_pbds :: rb_tree_tag, __gnu_pbds :: tree_order_statistics_node_update > tr;
inline int read () {
	int x = 0, f = 0;
	char c = getchar ();
	for ( ; c < '0' || c > '9' ; c = getchar ()) f |= (c == '-');
	for ( ; c >= '0' && c <= '9' ; c = getchar ()) x = (x << 1) + (x << 3) + (c & 15);
	return !f ? x : -x;
}
int a[7][7], sum[7][7][7][7], n, m, T, f[40][7][7][7][7];
inline int dp (int th) {
	for (int Li = 1;Li <= n; ++ Li) {
		for (int Ri = Li;Ri <= n; ++ Ri) {
			for (int Lj = 1;Lj <= m; ++ Lj) {
				for (int Rj = Lj;Rj <= m; ++ Rj) {
					for (int k = 0;k <= T; ++ k) f[k][Li][Ri][Lj][Rj] = 4e18;
					if (sum[Li][Ri][Lj][Rj] >= th) f[0][Li][Ri][Lj][Rj] = sum[Li][Ri][Lj][Rj] - th;
				}
			}
		}
	}
	for (int tm = 1;tm <= T; ++ tm) {
		for (int Li = 1;Li <= n; ++ Li) {
			for (int Ri = Li;Ri <= n; ++ Ri) {
				for (int Lj = 1;Lj <= m; ++ Lj) {
					for (int Rj = Lj;Rj <= m; ++ Rj) {
						for (int lf = tm - 1;lf >= 0; -- lf) {
							for (int cut = Li + 1;cut <= Ri; ++ cut) {
								int tmp = max (f[lf][Li][cut - 1][Lj][Rj], f[tm - lf - 1][cut][Ri][Lj][Rj]); 
								f[tm][Li][Ri][Lj][Rj] = min (f[tm][Li][Ri][Lj][Rj], tmp);
							}
							for (int cut = Lj + 1;cut <= Rj; ++ cut) {
								int tmp = max (f[lf][Li][Ri][Lj][cut - 1], f[tm - lf - 1][Li][Ri][cut][Rj]);
								f[tm][Li][Ri][Lj][Rj] = min (f[tm][Li][Ri][Lj][Rj], tmp);
							}
						}
					}
				}
			}
		}
	}
	return f[T][1][n][1][m];
}
signed main () {
	n = read (), m = read (), T = read ();
	for (int i = 1;i <= n; ++ i) {
		for (int j = 1;j <= m; ++ j) {
			a[i][j] = read ();
		}
	}
	for (int Li = 1;Li <= n; ++ Li) {
		for (int Ri = Li;Ri <= n; ++ Ri) {
			for (int Lj = 1;Lj <= m; ++ Lj) {
				for (int Rj = Lj;Rj <= m; ++ Rj) {
					for (int i = Li;i <= Ri; ++ i) {
						for (int j = Lj;j <= Rj; ++ j) {
							sum[Li][Ri][Lj][Rj] += a[i][j];
						}
					}
				}
			}
		}
	}
	int ans = 9e18;
	for (int Li = 1;Li <= n; ++ Li) {
		for (int Ri = Li;Ri <= n; ++ Ri) {
			for (int Lj = 1;Lj <= m; ++ Lj) {
				for (int Rj = Lj;Rj <= m; ++ Rj) {
					int base = sum[Li][Ri][Lj][Rj];
					ans = min (ans, dp (base));
				}
			}
		}
	}
	printf ("%lld\n", ans);
	return 0;
}

标签:__,AtCoder,gnu,int,题解,tree,pbds,298,include
From: https://www.cnblogs.com/RB16B/p/17391831.html

相关文章

  • AtCoder DP系列刷题记录
    直面自己的弱点。AFrog1简单线性\(\text{dp}\),令\(dp_i\)为跳到第\(i\)块石头的最小花费,易得:\[dp_i+=\min(|a_i-a_{i-1}|,|a_i-a_{i-2}|)\]BFrog2很快就写完了,但是一直调了十分钟,耻辱啊。如果反着跳,第\(i\)根木桩只能从第\(i+1\)或\(i+2\)木桩上跳到,则有:\[d......
  • AtCoder Beginner Contest 234 Ex Enumerate Pairs
    洛谷传送门AtCoder传送门把每个点分到\((\left\lfloor\frac{x}{K}\right\rfloor,\left\lfloor\frac{y}{K}\right\rfloor)\)的正方形内,枚举相邻正方形,计入答案。正确性显然。复杂度证明就是所有每个正方形内距离为\(K\)的点对下界为\(\Omega(n^2)\)。考虑分成四个边长为......
  • # Codeforces Round 872 (Div. 2) 题解
    CodeforcesRound872(Div.2)题解A.LuoTianyiandthePalindromeString略B.LuoTianyiandtheTable略C.LuoTianyiandtheShow略D1.LuoTianyiandtheFloatingIslands(EasyVersion)题意在树上随机撒\(k(k\leq3)\)个关键点,规定一个点是好的当且仅当这个......
  • springboot跨域问题解决方案
    以下内容仅供自己学习使用,侵权私聊必删。在进行前后端交互的时候,往往会遇到以下的跨域问题。那么解决这种跨域的话,可以使用以下这种方法:(引自于程序员青戈)创建config配置目录新建CorsConfig类然后把下面的内容复制进去根据自己需要修改以下就可以解决跨域问题啦importo......
  • AtCoder Beginner Contest 221 F Diameter set
    洛谷传送门AtCoder传送门显然,选出的每两个点都要组成一条直径。还是显然,每条直径的重合部分只可能是一个点或一条边。简单证一下,没有重合显然不可能,重合超过一个点或一条边,直径会更长。进一步发现,设直径点数为\(x\),如果\(x\nmid2\),重合部分是一个点,否则重合部分是一条边......
  • P1676 [USACO05FEB] Aggressive cows G 题解
    题目传送门解题思路最大值最小化问题,考虑二分答案。首先要排序,保证序列单调不降,然后求出两个隔间之间的距离。sort(a+1,a+1+n);for(rii=1;i<=n;i++) dis[i]=a[i+1]-a[i];二分出一个\(mid\),判断它是否合法:每次累加距离,如果距离和比\(mid\)大,说明当前可以分配牛,记录数量......
  • Codeforces Round 683 (Div. 1, by Meet IT) ABCDF题解
    F和D都在ABC上做过类似的,但是没打好,道心破碎。。。。A.Knapsack若物品质量在[(w+1)/2,w]之间做完了否则一直贪心加voidsolve(){intn;llw;cin>>n>>w;intc=n;for(inti=1;i<=n;i++){cin>>a[i];if(a[i]>w)c--;}if(!c){......
  • Linux环境下,输入文件的编码格式和系统格式导致的问题解决办法
    1.用vim111.txt进入查看状态 2系统格式的查看和修改查看指令:setfileformat修改指令:setfileformat=unix3编码格式的查看和修改 查看指令 :setfileencoding 修改指令 在Vim中直接实行转换文件编码,比如将一个文件转换成u......
  • linux静态库的制作及问题解决
       首先介绍下分文件,在学习或者开发中,实现一个项目需要实现很多的功能,那么这些功能不可能在一个".c"文件下实现,需要多个".c"文件来共同实现,但是程序的入口只有一个,就体现了分文件编程的重要性,在主函数中调用其余的功能函数。分文件编程的优点及意义就是:分模块编程思......
  • CF1825D1 题解
    一、题目描述:给定$n$和$k$,表示有$n$个点,其中有$k$个点是关键点,这$k$个点随机分布。给出$n$个点的连接方式,保证构成一棵树,求有期望多少个点使得这个点到$k$个关键点的距离之和最小,答案对$1e9+7$取模。数据范围:$1\leqn\leq2e5,1\leqk\leqmin(n,3)......