首页 > 其他分享 >2022.9.20———HZOI【CSP-S模拟7】游寄

2022.9.20———HZOI【CSP-S模拟7】游寄

时间:2022-09-23 10:14:22浏览次数:83  
标签:rt 20 int long re HZOI lz CSP define

Preface$

\(Rank36/43\)

\(20pts + 0pts + 50pts + 0pts = 70pts\)

\(\mathfrak{T1}\ 序列问题\)

一个\(cdq\),我没学\(cdq\),而且我连暴力\(dp\)都没打,因为我连暴力\(dp\)都不会

赛时想了两个小时,最后打了个爆搜。。太亏了。。。

赛后写了个暴力\(dp\)莫名有\(70pts\),别人只有\(50pts\),不清楚为什么

这个题最后我是暴力\(dp\)+骗分过的,因为数据过水,后面两个\(subtask\)只要统计\([i==a_i]\)的数目即可(这不是正解!!)

T1
#include <iostream>
#define GMY (520&1314)
#define FBI_OPENTHEDOOR(x) freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout);
#define re register int
#define char_phi signed
#define MARK cout << "###"
#define MARKER "@@@"
#define LMARK "!!!~~~"
#define ZY " qwq "
#define _ " "
#define Endl cout << '\n'
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#define N 500005
using namespace std;
inline void Fastio_setup(){ios::sync_with_stdio(false); cin.tie(NULL), cout.tie(NULL);}
int n, final_ans;
int a[N], w[N], f[N];
void work(){
	cin >> n;
	for (re i = 1 ; i <= n ; ++ i)
		{cin >> a[i]; w[i] = i - a[i];}
	if (n >= 100000)
		goto pianfen;
	for (re i = 1 ; i <= n ; ++ i){
		if (w[i] < 0)
			continue;
		f[i] = 1;
		for (re j = 1 ; j <= i-1 ; ++ j){
			if (w[j] < 0)
				continue;
			if (a[j] < a[i] and w[j] <= w[i])
				f[i] = MAX(f[i], f[j] + 1);
		}
	}
	for (re i = 1 ; i <= n ; ++ i)
		if (w[i] >= 0)
			final_ans = MAX(final_ans, f[i]);
	cout << final_ans << '\n';
	return ;
	pianfen:{
		for (re i = 1 ; i <= n ; ++ i)
			if (w[i] == 0)
				final_ans ++;
		cout << final_ans << '\n';
	}
}
#define IXINGMY
char_phi main(){
	#ifdef IXINGMY
		FBI_OPENTHEDOOR(sequence);
	#endif
	Fastio_setup();
	work();
	return GMY;
}

\(\mathfrak{T2}\ 钱仓\)

比较智慧的贪心。

大胆猜想有一个点是一个分割点,分割点就是他之前的钱不会经过他顺时针运到他的后边。

暴力\(O(n)\)枚举这个点,再\(O(n)\)判断,可以获得\(64pts\)的好成绩。

考虑如何优化取点过程:分割点一定存在并且为最大子段和的起点。

这个嘛我不会证\(、、、\)

最大子段和我还是会求的,这玩意记忆尤深(我谢谢\(eafoo\))

T2
#include <iostream>
#define GMY (520&1314)
#define FBI_OPENTHEDOOR(x) freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout);
#define int long long
#define re register int
#define char_phi signed
#define MARK cout << "###"
#define MARKER "@@@"
#define LMARK "!!!~~~"
#define ZY " qwq "
#define _ " "
#define Endl cout << '\n'
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#define N 100005
using namespace std;
inline void Fastio_setup(){ios::sync_with_stdio(false); cin.tie(NULL), cout.tie(NULL);}
/*
	“比较智慧的贪心。”
*/
int n, st, ed, final_ans, L, R;
long long sum;
int a[N<<1], b[N<<1], q[N<<1];
void work(){
	cin >> n;
	for (re i = 1 ; i <= n ; ++ i)
		{cin >> a[i]; a[i+n] = a[i];}
	for (re i = 1 ; i <= n ; ++ i){
		sum += a[i]-1;
		if (sum < 0)
			st = i+1, sum = 0;
	}
	ed = st + n - 1, L = 0, R = -1;
	for (re i = st ; i <= ed ; ++ i)
		b[i] = a[i];
	for (re i = ed ; i >= st ; -- i){
		if (b[i] == 0)
			{q[++ R] = i; continue;}
		while (b[i] != 0 and L <= R)
			final_ans += (i-q[L])*(i-q[L]), b[i] --, b[q[L]] ++, L ++;
		if (b[i] == 0)
			q[++ R] = i;
	}
	cout << final_ans << '\n';
}
#define IXINGMY
char_phi main(){
    // srand(time(0));
	#ifdef IXINGMY
		FBI_OPENTHEDOOR(barn);
	#endif
	Fastio_setup();
	work();
	return GMY;
}

\(\mathfrak{T3}\ 自然数\)

下载下发文件的时候我看到里面有一个sample_mex1.in我就觉得事情不简单

吓死我了我以为要考博弈论\(SG\)函数

结果就是一个求\(mex\)

说正解

首先预处理出\(1 \sim n\) 的\(mex\)值,然后一个\(l\)指针指向\(1\),考虑移动\(l\)指针对答案所造成的影响。

l++后,无非是将\(a_{l-1}\)从当前自然数集合中删去,发现从\(l-1\)到下一次\(a_{l-1}\)出现这个区间内的\(mex\)值大于\(a_{l-1}\)的都变成了\(a_{l-1}\)。原因很简单,因为出现了\(a_{l-1}\)这个数的空缺。

更新之后执行区间查询即可。

然后找点的话直接二分位置然后在线段树上查询即可。

T3
#include <iostream>
#include <map>
#define GMY (520&1314)
#define FBI_OPENTHEDOOR(x) freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout);
#define re register int
#define char_phi signed
#define MARK cout << "###"
#define MARKER "@@@"
#define LMARK "!!!~~~"
#define ZY " qwq "
#define _ " "
#define Endl cout << '\n'
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#define N 200005
using namespace std;
inline void Fastio_setup(){ios::sync_with_stdio(false); cin.tie(NULL), cout.tie(NULL);}
/*
	十分美丽的思路
	首先预处理1~n的mex
	然后移动左端点
	a[l] ~ 下一个a[l]之间的mex > a[l]的直接给换成a[l],因为出现了a[l]空缺
	这思路太美丽了
	然后直接二分mex,在线段树上找点
*/
int n;
long long final_ans;
int a[N], cnt[N], f[N], nxt[N];
map<int, int> mp;
struct Seg_tree{long long mn, sum, lz;} t[N<<2];
#define lson (rt << 1)
#define rson (rt << 1 | 1)
#define mid ((l + r) >> 1)
inline void Pushup(int rt){
	t[rt].mn = MIN(t[lson].mn, t[rson].mn);
	t[rt].sum = t[lson].sum + t[rson].sum;
}
inline void Pushdown(int rt, int l, int r){
	t[lson].sum = (mid - l + 1) * t[rt].lz, t[rson].sum = (r - mid) * t[rt].lz;
	t[lson].mn = t[rson].mn = t[rt].lz;
	t[lson].lz = t[rson].lz = t[rt].lz;
	t[rt].lz = -1;
}
void Build(int rt, int l, int r){
	t[rt].lz = -1;
	if (l == r)
		{t[rt].mn = t[rt].sum = f[l]; return ;}
	Build(lson, l, mid);
	Build(rson, mid+1, r);
	Pushup(rt);
}
long long Range_Query(int rt, int l, int r, int L, int R){// 查区间和
	if (L <= l and r <= R)
		return t[rt].sum;
	long long rtn(0);
	if (t[rt].lz != -1)
		Pushdown(rt, l, r);
	if (L <= mid)
		rtn += Range_Query(lson, l, mid, L, R);
	if (R > mid)
		rtn += Range_Query(rson, mid+1, r, L, R);
	return rtn;
}
long long Pos_Query(int rt, int l, int r, int pos){// 查区间最小
	if (l == r)
		return t[rt].mn;
	if (t[rt].lz != -1)
		Pushdown(rt, l, r);
	if (pos <= mid)
		return Pos_Query(lson, l, mid, pos);
	else 
		return Pos_Query(rson, mid+1, r, pos);
}
void Update(int rt, int l, int r, int L, int R, long long w){
	if (L <= l and r <= R){
		/*if (t[rt].mn <= w)
			cerr << rt << _ << l << _ << r << _ << t[rt].mn << _ << w << '\n';*/
		t[rt].sum = w * (r-l+1), t[rt].lz = w, t[rt].mn = w;// 因为加进来一定比原来小(
		return ;
	}
	if (t[rt].lz != -1)
		Pushdown(rt, l, r);
	if (L <= mid)
		Update(lson, l, mid, L, R, w);
	if (R > mid)
		Update(rson, mid+1, r, L, R, w);
	Pushup(rt);
}
void work(){
	cin >> n;
	for (re i = 1 ; i <= n ; ++ i)
		cin >> a[i];
	for (re i = 1, ans(0) ; i <= n ; ++ i){
		if (a[i] <= n)// 大于n的【】用没有(
			cnt[a[i]] ++;
		while (cnt[ans] != 0)
			ans ++;
		f[i] = ans;
	}
	Build(1, 1, n);
	for (re i = n ; i >= 1 ; -- i){
		nxt[i] = n+1;
		if (mp.find(a[i]) == mp.end())
			{mp[a[i]] = i; continue;}
		nxt[i] = mp[a[i]], mp[a[i]] = i;
	}
	int L, R, MID, plc;
	for (re i = 1 ; i <= n ; ++ i){
		final_ans += Range_Query(1, 1, n, i, n);
		// 删掉a[i]
		L = i, R = nxt[i]-1, plc = -1;
		while (L <= R){// 因为mex是单调不降的
			MID = (L + R) >> 1;
			if (Pos_Query(1, 1, n, MID) > a[i])
				plc = MID, R = MID - 1;
			else 
				L = MID + 1;
		}
		if (plc != -1)
			Update(1, 1, n, plc, nxt[i]-1, a[i]);
	}
	cout << final_ans << '\n';
}
#define IXINGMY
char_phi main(){
	#ifdef IXINGMY
		FBI_OPENTHEDOOR(mex);
	#endif
	Fastio_setup();
	work();
	return GMY;
}

\(\mathfrak{T4}\ 环路\)

标签:rt,20,int,long,re,HZOI,lz,CSP,define
From: https://www.cnblogs.com/charphi/p/16721705.html

相关文章