D. Unique Palindromes
A palindrome is a string that reads the same backwards as forwards. For example, the string abcba is palindrome, while the string abca is not.
Let $p(t)$ be the number of unique palindromic substrings of string $t$, i. e. the number of substrings $t[l \dots r]$ that are palindromes themselves. Even if some substring occurs in $t$ several times, it's counted exactly once. (The whole string $t$ is also counted as a substring of $t$).
For example, string $t$ $=$ abcbbcabcb has $p(t) = 6$ unique palindromic substrings: a, b, c, bb, bcb and cbbc.
Now, let's define $p(s, m) = p(t)$ where $t = s[1 \dots m]$. In other words, $p(s, m)$ is the number of palindromic substrings in the prefix of $s$ of length $m$. For example, $p($abcbbcabcb$, 5)$ $=$ $p($abcbb$) = 5$.
You are given an integer $n$ and $k$ "conditions" ($k \le 20$). Let's say that string $s$, consisting of $n$ lowercase Latin letters, is good if all $k$ conditions are satisfied at the same time. A condition is a pair $(x_i, c_i)$ and have the following meaning:
- $p(s, x_i) = c_i$, i. e. a prefix of $s$ of length $x_i$ contains exactly $c_i$ unique palindromic substrings.
Find a good string $s$ or report that such $s$ doesn't exist.
Look in Notes if you need further clarifications.
Input
Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 10^4$). The description of the test cases follows.
The first line of each test case contains two integers $n$ and $k$ ($3 \le n \le 2 \cdot 10^5$; $1 \le k \le 20$) — length of good string $s$ and number of conditions.
The second line of each test case contains $k$ integers $x_1, x_2, \dots, x_k$ ($3 \le x_1 < x_2 < \dots < x_k = n$) where $x_i$ is the length of the prefix in the $i$-th condition.
The third line of each test case contains $k$ integers $c_1, c_2, \dots, c_k$ ($3 \le c_1 \le c_2 \le \dots \le c_k \le \min{\left(10^9, \frac{(n + 1) n}{2} \right)}$) where $c_i$ is the number of palindromic substrings in the $i$-th condition.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10 ^ 5$.
Output
For each test case, if there is no good string $s$ of length $n$ that satisfies all conditions, print NO.
Otherwise, print YES and a string $s$ of length $n$, consisting of lowercase Latin letters, that satisfies all conditions. If there are multiple answers, print any of them.
Example
input
7 10 2 5 10 5 6 3 1 3 3 4 2 3 4 3 3 4 2 3 4 3 4 4 1 4 5 10 3 4 6 10 4 5 8 10 4 4 6 7 10 4 5 7 8
output
YES abcbbcabcb YES foo YES ayda YES wada NO YES abcbcacbab NO
Note
In the first test case, string $s$ $=$ abcbbcabcb satisfies $k = 2$ conditions:
- $p(s, x_1) = p(s, 5) =$ $p($abcbb$) = 5 = s_1$. Palindromic substrings are a, b, c, bb and bcb.
- $p(s, x_2) = p(s, 10) =$ $p($abcbbcabcb$) = 6 = s_2$. Palindromic substrings are the same as above, and one extra substring cbbc.
In the second test case, string foo satisfies $k = 1$ condition:
- $p($foo$) = 3$. Palindromic substrings are f, o and oo.
There are other possible answers.
In the third test case, string ayda satisfies $k = 2$ conditions:
- $p($ayd$) = 3$. Palindromic substrings are a, y and d.
- $p($ayda$) = 3$. Palindromic substrings are the same.
In the fourth test case, string wada satisfies $k = 2$ conditions:
- $p($wad$) = 3$. Palindromic substrings are w, a and d.
- $p($wada$) = 4$. Palindromic substrings are the same, and one extra substring ada.
In the fifth test case, it can be proven that there is no string of length $4$ which has $5$ palindromic substrings.
In the sixth test case, string abcbcacbab satisfies $k = 3$ conditions:
- $p($abcb$) = 4$. Palindromic substrings are a, b, c and bcb.
- $p($abcbca$) = 5$. Palindromic substrings are the same, and one extra substring cbc.
- $p($abcbcacbab$) = 8$. Palindromic substrings are the same, and three extra substrings cac, bab and bcacb.
解题思路
先手动模拟$n$较小的情况,看看唯一回文子串个数$P$是多少。
如果$n=1$,那么$P=1$。
如果$n=2$,只有两种情况 aa 和 ab ,都有$P=2$。
如果$n=3$,有$4$种情况,即分别考虑第$2$个与第$3$个字符是否与前一个相同,那么就有$2^2$种。即 aaa,aab,aba,abc,都有$P=3$。这也是为什么数据中的$x$和$c$都至少为$3$。
如果$n > 3$,那么前$3$个字符对$P$已经有$3$个贡献,如果往字符串最后添加一个字符$c$,那么新的字符串的$P_{new}$只能比之前的$P_{old}$增加$0$或$1$。反证法,假设$P_{new} - P_{old} \ge 2$,那么选择出两个新的回文子串,这两个新的回文子串的结尾字符必然是$c$,并且这两个回文子串的长度必然不一样。不妨设长度大的子串$s_1$的左端点为$i$,长度小的子串$s_2$的左端点为$j$,那么有$i < j$,两个回文子串的右端点均为$k$(即字符$c$的位置)。根据回文的定义,$s_2$必然是$s_1$的前缀与后缀,可以参考下图:
回文子串$[j, \ k]$与$[i, \ i+k-j]$是同一个,而我们已经把前面的$[i,i+k-j]$统计到$P_{old}$了。所以如果存在以$c$结尾的回文子串那么应该只统计长度最长的那一个,因为任何短的回文子串在之前已经统计过了。故多加一个字符最多会使得$P$增加$1$。
我们先构造出一些特别的子串,$P=n$时有 aaaaaa... ;$P=3$时有 abcabc... 。
然后我们先考虑$k=1$的情况,即只有一个约束条件。首先根据上面的结论知道如果$c_1 > x_1$,那么无解。否则先构造出$c_1 - 3$个 a(注意$c_i \geq 3$),然后用 abc 填补直到字符串的长度为$n$。那么就会得到这种形式:aaa...aaabcabc... 。
考虑$k>1$。首先如果$c_{i} - c_{i-1} > x_{i} - x_{i-1}$,那么无解,因为添加$x_i - x_{i-1}$个字符最多使得$P$增加$x_i - x_{i-1}$。否则我们任取一个之前没用过的字符$d$(由于最多只有$20$个约束,因此$26$个小写字母足够用),然后往答案后面添加$c_{i} - c_{i-1}$个$d$,然后再用 abc 去填充直到字符的长度变成$x_i$。那么得到的字符串就会是这种形式,其中表示 | 各个约束的边界: aaaaaaaaabcabcab|dddddcabcabca|eeebcab 。
注意到每次填充 abc 都是从上一次结束字符的下一个开始,比如上一次约束最后填充到 a ,那么下一次应该从 b 开始继续填充,这样做可以避免产生不必要的回文。否则比如 ...ddabca|eabc... ,那么就会形成回文 aea 。
AC代码如下:
1 #include <bits/stdc++.h> 2 using namespace std; 3 4 const int N = 2e5 + 10; 5 6 int x[N], c[N]; 7 8 void solve() { 9 int n, m; 10 scanf("%d %d", &n, &m); 11 for (int i = 0; i < m; i++) { 12 scanf("%d", x + i); 13 } 14 for (int i = 0; i < m; i++) { 15 scanf("%d", c + i); 16 } 17 if (c[0] > x[0]) { // P<=n 18 printf("NO\n"); 19 return; 20 } 21 string ans; 22 int t = 0; 23 // 处理第一个约束 24 for (int i = 0; i < c[0] - 3; i++) { 25 ans += 'a'; 26 } 27 for (int i = c[0] - 3; i < x[0]; i++) { 28 ans += 'a' + t; 29 t = (t + 1) % 3; 30 } 31 //处理剩下的约束 32 for (int i = 1; i < m; i++) { 33 if (c[i] - c[i - 1] > x[i] - x[i - 1]) { 34 printf("NO\n"); 35 return; 36 } 37 for (int j = c[i - 1]; j < c[i]; j++) { // 添加c[i]-c[i-1]个之前没出现过的字符 38 ans += 'c' + i; 39 } 40 while (ans.size() < x[i]) { // 用abc填补到长度x[i] 41 ans += 'a' + t; 42 t = (t + 1) % 3; 43 } 44 } 45 while (ans.size() < n) { // 记得最后把字符串填补到长度n 46 ans += 'a' + t; 47 t = (t + 1) % 3; 48 } 49 printf("YES\n%s\n", ans.c_str()); 50 } 51 52 int main() { 53 int t; 54 scanf("%d", &t); 55 while (t--) { 56 solve(); 57 } 58 59 return 0; 60 }
参考资料
Codeforces Round #868 (Div.2) Editorial:https://codeforces.com/blog/entry/115465
标签:10,Palindromes,string,Palindromic,substrings,le,test,Unique From: https://www.cnblogs.com/onlyblues/p/17362911.html