首页 > 其他分享 >字符设备驱动开发

字符设备驱动开发

时间:2023-04-28 16:34:16浏览次数:24  
标签:字符 函数 int struct 模块 file 驱动 设备

1、字符设备驱动简介
  字符设备是 Linux 驱动中最基本的一类设备驱动,字符设备就是一个一个字节,按照字节流进行读写操作的设备,读写数据是分先后顺序的。比如我们最常见的点灯、按键、 IIC、 SPI,LCD 等等都是字符设备,这些设备的驱动就叫做字符设备驱动。
  在详细的学习字符设备驱动架构之前,我们先来简单的了解一下 Linux 下的应用程序是如何调用驱动程序的, Linux 应用程序对驱动程序的调用如图 40.1.1 所示:

 

  在 Linux 中一切皆为文件,驱动加载成功以后会在“/dev”目录下生成一个相应的文件,应用程序通过对这个名为“/dev/xxx” (xxx 是具体的驱动文件名字)的文件进行相应的操作即可实现对硬件的操作。比如现在有个叫做/dev/led 的驱动文件,此文件是 led 灯的驱动文件。应用程序使用 open 函数来打开文件/dev/led,使用完成以后使用 close 函数关闭/dev/led 这个文件。 open和 close 就是打开和关闭 led 驱动的函数,如果要点亮或关闭 led,那么就使用 write 函数来操作,也就是向此驱动写入数据,这个数据就是要关闭还是要打开 led 的控制参数。如果要获取led 灯的状态,就用 read 函数从驱动中读取相应的状态。
  应用程序运行在用户空间,而 Linux 驱动属于内核的一部分,因此驱动运行于内核空间。当我们在用户空间想要实现对内核的操作,比如使用 open 函数打开/dev/led 这个驱动,因为用户空间不能直接对内核进行操作,因此必须使用一个叫做“系统调用”的方法来实现从用户空间“陷入” 到内核空间,这样才能实现对底层驱动的操作。 open、 close、 write 和 read 等这些函数是由 C 库提供的,在 Linux 系统中,系统调用作为 C 库的一部分。当我们调用 open 函数的时候流程如图 40.1.2 所示:

  其中关于 C 库以及如何通过系统调用“陷入” 到内核空间这个我们不用去管,我们重点关注的是应用程序和具体的驱动,应用程序使用到的函数在具体驱动程序中都有与之对应的函数,比如应用程序中调用了 open 这个函数,那么在驱动程序中也得有一个名为 open 的函数。每一个系统调用,在驱动中都有与之对应的一个驱动函数,在 Linux 内核文件 include/linux/fs.h 中有个叫做 file_operations 的结构体,此结构体就是 Linux 内核驱动操作函数集合,内容如下所示:

示例代码 40.1.1 file_operations 结构体
struct file_operations 
{
    struct module *owner;
    loff_t (*llseek) (struct file *, loff_t, int);
    ssize_t (*read) (struct file *, char __user *, size_t, loff_t*);
    ssize_t (*write) (struct file *, const char __user *, size_t,loff_t *);
    ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
    ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
    int (*iterate) (struct file *, struct dir_context *);
    unsigned int (*poll) (struct file *, struct poll_table_struct*);
    long (*unlocked_ioctl) (struct file *, unsigned int, unsignedlong);
    long (*compat_ioctl) (struct file *, unsigned int, unsignedlong);
    int (*mmap) (struct file *, struct vm_area_struct *);
    int (*mremap)(struct file *, struct vm_area_struct *);
    int (*open) (struct inode *, struct file *);
    int (*flush) (struct file *, fl_owner_t id);
    int (*release) (struct inode *, struct file *);
    int (*fsync) (struct file *, loff_t, loff_t, int datasync);
    int (*aio_fsync) (struct kiocb *, int datasync);
    int (*fasync) (int, struct file *, int);
    int (*lock) (struct file *, int, struct file_lock *);
    ssize_t (*sendpage) (struct file *, struct page *, int, size_t,loff_t *, int);
    unsigned long (*get_unmapped_area)(struct file *, unsigned long,unsigned long, unsigned long, unsigned long);
    int (*check_flags)(int);
    int (*flock) (struct file *, int, struct file_lock *);
    ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,loff_t *, size_t, unsigned int);
    ssize_t (*splice_read)(struct file *, loff_t *, structpipe_inode_info *, size_t, unsigned int);
    int (*setlease)(struct file *, long, struct file_lock **, void**);
    long (*fallocate)(struct file *file, int mode, loff_t offset,loff_t len);
    void (*show_fdinfo)(struct seq_file *m, struct file *f);
    #ifndef CONFIG_MMU
    unsigned (*mmap_capabilities)(struct file *);
    #endif
};

  简单介绍一下 file_operation 结构体中比较重要的、常用的函数:
    owner指针拥有该结构体的模块的指针,一般设置为 THIS_MODULE。
    llseek 函数用于修改文件当前的读写位置。
    read 函数用于读取设备文件。
    write 函数用于向设备文件写入(发送)数据。
    poll 是个轮询函数,用于查询设备是否可以进行非阻塞的读写。
    unlocked_ioctl 函数提供对于设备的控制功能,与应用程序中的 ioctl 函数对应。
    compat_ioctl 函数与 unlocked_ioctl 函数功能一样,区别在于在 64 位系统上,32 位的应用程序调用将会使用此函数。在 32 位的系统上运行 32 位的应用程序调用的是unlocked_ioctl。
    mmap 函数用于将设备的内存映射到进程空间中(也就是用户空间),一般帧缓冲设备会使用此函数,比如 LCD 驱动的显存,将帧缓冲(LCD 显存)映射到用户空间中以后应用程序就可以直接操作显存了,这样就不用在用户空间和内核空间之间来回复制。
    open 函数用于打开设备文件。
    release 函数用于释放(关闭)设备文件,与应用程序中的 close 函数对应。
    fasync 函数用于刷新待处理的数据,用于将缓冲区中的数据刷新到磁盘中。
    aio_fsync 函数与 fasync 函数的功能类似,只是 aio_fsync 是异步刷新待处理的数据。
  在字符设备驱动开发中最常用的就是上面这些函数,关于其他的函数大家可以查阅相关文档。我们在字符设备驱动开发中最主要的工作就是实现上面这些函数,不一定全部都要实现,但是像 open、 release、 write、 read 等都是需要实现的,当然了,具体需要实现哪些函数还是要看具体的驱动要求。

2、字符设备驱动开发步骤

  在 Linux 驱动开发中我们需要按照其规定的框架来编写驱动,所以说学 Linux 驱动开发重点是学习其驱动框架。
  2.1、驱动模块的加载和卸载

  Linux 驱动有两种运行方式,第一种就是将驱动编译进 Linux 内核中,这样当 Linux 内核启动的时候就会自动运行驱动程序。第二种就是将驱动编译成模块(Linux 下模块扩展名为.ko),在Linux 内核启动以后使用“insmod”命令加载驱动模块。在调试驱动的时候一般都选择将其编译为模块,这样我们修改驱动以后只需要编译一下驱动代码即可,不需要编译整个 Linux 代码。而且在调试的时候只需要加载或者卸载驱动模块即可,不需要重启整个系统。总之,将驱动编译为模块最大的好处就是方便开发,当驱动开发完成,确定没有问题以后就可以将驱动编译进Linux 内核中,当然也可以不编译进 Linux 内核中,具体看自己的需求。
  模块有加载和卸载两种操作,我们在编写驱动的时候需要注册这两种操作函数,模块的加载和卸载注册函数如下:

module_init(xxx_init); //注册模块加载函数
module_exit(xxx_exit); //注册模块卸载函数

  module_init 函数用来向 Linux 内核注册一个模块加载函数,参数 xxx_init 就是需要注册的具体函数,当使用“insmod”命令加载驱动的时候, xxx_init 这个函数就会被调用。

  module_exit()函数用来向 Linux 内核注册一个模块卸载函数,参数 xxx_exit 就是需要注册的具体函数,当使用“rmmod”命令卸载具体驱动的时候 xxx_exit 函数就会被调用。

  字符设备驱动模块加载和卸载模板如下所示:

/* 驱动入口函数 */
static int __init xxx_init(void)
{
    /* 入口函数具体内容 */
    return 0;
}

/* 驱动出口函数 */
static void __exit xxx_exit(void)
{
     /* 出口函数具体内容 */
}

/* 将上面两个函数指定为驱动的入口和出口函数 */
module_init(xxx_init);
module_exit(xxx_exit);

  定义了个名为 xxx_init 的驱动入口函数,并且使用了“__init”来修饰。
  定义了个名为 xxx_exit 的驱动出口函数,并且使用了“__exit”来修饰。
  调用函数 module_init 来声明 xxx_init 为驱动入口函数,当加载驱动的时候 xxx_init函数就会被调用。
  调用函数module_exit来声明xxx_exit为驱动出口函数,当卸载驱动的时候xxx_exit函数就会被调用。

  驱动编译完成以后扩展名为.ko,有两种命令可以加载驱动模块: insmod和modprobe, insmod是最简单的模块加载命令,此命令用于加载指定的.ko 模块,比如加载 drv.ko 这个驱动模块,命令如下:

insmod drv.ko

  insmod 命令不能解决模块的依赖关系,比如 drv.ko 依赖 first.ko 这个模块,就必须先使用insmod 命令加载 first.ko 这个模块,然后再加载 drv.ko 这个模块。但是 modprobe 就不会存在这个问题, modprobe 会分析模块的依赖关系,然后会将所有的依赖模块都加载到内核中,因此modprobe 命令相比 insmod 要智能一些。 modprobe 命令主要智能在提供了模块的依赖性分析、错误检查、错误报告等功能,推荐使用 modprobe 命令来加载驱动。 modprobe 命令默认会去/lib/modules/<kernel-version>目录中查找模块,比如本书使用的 Linux kernel 的版本号为 4.1.15,因此 modprobe 命令默认会到/lib/modules/4.1.15 这个目录中查找相应的驱动模块,一般自己制作的根文件系统中是不会有这个目录的,所以需要自己手动创建。
  驱动模块的卸载使用命令“rmmod”即可,比如要卸载 drv.ko,使用如下命令即可:

rmmod drv.ko

  也可以使用“modprobe -r”命令卸载驱动,比如要卸载 drv.ko,命令如下:

modprobe -r drv.ko

  使用 modprobe 命令可以卸载掉驱动模块所依赖的其他模块,前提是这些依赖模块已经没有被其他模块所使用,否则就不能使用 modprobe 来卸载驱动模块。所以对于模块的卸载,还是推荐使用 rmmod 命令。

 

标签:字符,函数,int,struct,模块,file,驱动,设备
From: https://www.cnblogs.com/The-explosion/p/17362555.html

相关文章

  • 使用MASA Stack+.Net 从零开始搭建IoT平台 第三章 设备生命周期管理-管理设备的连接
    @目录前言分析方案1:遗嘱消息演示遗嘱消息的使用实施流程方案2:使用Webhook开启WebHook演示Webhook编写代码总结前言获取一个设备的在线和离线状态,是一个很关键的功能。我们对设备下发的控制指令,设备处于在线状态才能及时给我们反馈。这里的在线和离线,我们可以简单的理解为设备......
  • 列表和字符串的相互转换
    xm=['zhang3','li4','wang5','zhao6']a=','.join(xm)#用逗号连接列表里的内容a=''.join(xm)#用空格连接列表里的内容xm2=''foriinxm: xm2=xm2+i+''xm2=''.join([str(i)for......
  • 使用jquery探测移动设备 How to detect mobile devices using jQuery
     Helloeveryone,yesterdayIreceivedarequestfromtheclient.HewantedtodisablethepopupofNewsletterPopupextensionwhencustomersvisithiswebsiteonmobiledevices.ItgavemeachancetoworkwithjQueryagainandfinallyIcameupwitha......
  • Bash 中的特殊字符大全
    Linux下无论如何都是要用到shell命令的,在Shell的实际使用中,有编程经验的很容易上手,但稍微有难度的是shell里面的那些个符号,各种特殊的符号在我们编写Shell脚本的时候如果能够用的好,往往能给我们起到事半功倍的效果,为此,特地将Shell里面的一些符号说明罗列成对照表的形式,以便快速的......
  • hdoj 展开字符串 1274 (字符串递归) 好题
    展开字符串TimeLimit:2000/1000MS(Java/Others)   MemoryLimit:65536/32768K(Java/Others)TotalSubmission(s):2116   AcceptedSubmission(s):1017ProblemDescription在纺织CAD系统开发过程中,经常会遇到纱线排列的问题。该问题的描述是这样的......
  • c语言中,字符数组名 与 指向字符串常量的指针之间的关系
    chara[]="hello";//定义一个字符数组a,constchar*b="hello";//定义一个指向字符的指针b,指向字符串常量的第一个字符的首地址区别:a是一个指针常量,它本身的值不能修改,即char*consta;b是一个常量指针,它所指向的值不能修改,constchar*b;......
  • MySQL转移字符
    MySQL语言中的转义字符和各种编程语言基本相同,见下表形式含义\00(NUL)字符\n换行\r回车符\t制表符\b退格\'单引号\"双引号\\反斜线\%%符(用于区分模式匹配中的%)\__符(用于区分模式匹配中的_)举其中一个用的比较多的'\n'为例,执行以下......
  • linux设备树-中断控制器驱动(二)
    一、GPIO控制器驱动xx二、引用intc中断的节点的解析xx三、引用GPIO中断的节点的解析xx 参考文章[1]基於tiny4412的Linux內核移植---实例学习中断背后的知识(1)[2]基於tiny4412的Linux內核移植---实例学习中断背后的知识(2)......
  • C语言处理特定字符串
    C语言处理特定字符串在使用NiosIDE实现串口助手向NiosII系统发送数据时,再将数据发送至FPGA逻辑模块,以此控制LED灯。在串口助手中发送14568936的数据,Nios接收到的数据是形如"14568936\r\n"的字符串,默认以\r\n结尾,要将此字符串转化为四个整型数据。#include<stdio.h>......
  • Elmo 驱动器关于双编码器读数的获取方式
    问题提出本文使用的Elmo驱动器型号是GoldTwitter。想要获取双编码器的目的是发现当使用双编码器进行驱动器调参时,发现位置环跟踪非常不稳定,存在震荡现象。因为在Elmo的双编码器配置里,电机端的编码器用于配置速度环和Communication,而输出端(负载端)的编码器用于配......