1.
题目大意:
给一个长度为n的的数组a,n是1到1e5,ai是1到1e5,问a的所有排序的序列的逆序对之和,会有重复的数字出现
题目链接:https://ac.nowcoder.com/acm/contest/46597/E
typedef long long ll;
typedef long long LL;
typedef pair<int,int> pii;
typedef unsigned long long ull;
typedef pair<double,double> pdd;
const int inf = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
#define endl '\n'
const int N = 1e5 + 7;
LL ksm(LL x, LL y) {
LL res = 1;
while (y) {
if (y & 1) {
res = 1ll * res * x % MOD;
}
x = 1ll * x * x % MOD;
y >>= 1;
}
return res;
}
LL inv(int x) {
return ksm(x, MOD - 2);
}
LL b[N], fac[N];
signed main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int n;
std::cin >> n;
std::vector<LL>a(n + 1), s(n + 1), cnt(n + 1);
for (int i = 1; i <= n; ++i) {
std::cin >> a[i];
b[i] = a[i];
}
if (n == 1) {
std::cout << 0 << '\n';
return 0;
}
std::sort(b + 1, b + 1 + n);
int len = std::unique(b + 1, b + 1 + n) - b - 1;
for (int i = 1; i <= n; ++i) {
a[i] = std::lower_bound(b + 1, b + 1 + len, a[i]) - b;
++cnt[a[i]];
}
fac[0] = 1;
for (int i = 1; i <= n; ++i) {
fac[i] = 1ll * fac[i - 1] * i % MOD;
}
LL ans = 0;
for (int i = 1; i <= len; ++i) {
s[i] = s[i - 1] + cnt[i];
}
for (int i = 1; i <= len; ++i) {
ans = (ans + s[i - 1] * cnt[i]) % MOD;
}
std::cout << 1ll * ans * fac[n] % MOD * inv(2) % MOD << '\n';
return 0;
}
2
题目大意:
求所有由1-9组成的长度为n的序列逆序对总数。会有重复的数字
题目链接:https://vjudge.net/problem/SCU-4571
思路: 直接算贡献, 也就是我们直接从9个里任选2人, 那么这两个就可以造成一个1的贡献, 那么其他地方了? 就可以随便填, 然后算出送的填的方式即可. 所以公式就是: \(C(n, 2) * C(9, 2) * 9^{n-2}\).
含义就是9个里任选选出了两个数, 可以造成贡献1, 那么方案是在n个位置中任选的两个位置去填这任选的两个数字, 然后其他位置可以9个数字任意填, 所以答案就是这么多.
注意取mod, 用unsigned long long 溢出自动取mod, 即自动取\(2^{64}\)的mod.
#define ull unsigned long long int
ull qpow(ull x, ull y) {
ull res = 1;
while(y) {
if (y & 1) res = res * x;
x *= x;
y >>= 1;
}
return res;
}
void solve()
{
ull n;
cin >> n;
ull ans = (n * (n-1) / 2) * (9 * 8 / 2) * qpow(9, n-2);
cout << ans << endl;
}
3
题目大意:
求长为n的全部排列的逆序对的数量,这里是排列了
题目链接:https://vjudge.net/problem/SCU-4571
经典结论:长度为n的排列的逆序对数量的期望为\(C(n,2)/2\)。
简单证明:任意两个数在一个排列中,为逆序的概率是\((1/2)\),选择两个数的方案为\(C(n,2)\)。
故长度为n的排列的逆序对数量的总和为n!*C(n,2)/2,其中,n!是排列的数量
例题:https://ac.nowcoder.com/acm/contest/45670/F