首页 > 其他分享 >ggplot2实现分半小提琴图绘制基因表达谱和免疫得分

ggplot2实现分半小提琴图绘制基因表达谱和免疫得分

时间:2023-04-21 13:33:56浏览次数:56  
标签:1.4 得分 1.1 ## 0.3 library ggplot2 2.3 分半


最近看到很多人问下面这个图怎么绘制,看着确实不错。于是我查了一些资料,这个图叫split violin或者half violin,本质上是一种小提琴图。参考代码在https://gist.github.com/Karel-Kroeze/746685f5613e01ba820a31e57f87ec87

ggplot2实现分半小提琴图绘制基因表达谱和免疫得分_ggplot2

这里利用上期处理好的TCGA HNSCC的配对数据进行练习,数据包含43个肿瘤样本和43个癌旁样本。

除了基因表达量绘制的结果展示,最后还附带一个ESTIMATE计算免疫评分的例子。此外,计算免疫浸润主流的方法还有CibersortssGSEA等算法,在之后的推文里我会做一些教程介绍。

具体代码如下:

remove(list = ls()) #一键清空
#加载包
library(ggplot2)
library(reshape2)
library(plyr)

suppressMessages(library(ggpubr))
suppressMessages(library(dplyr))

读入Deseq2标准化后的表达数据

# 1.1 表达数据
data <- read.csv("./Rawdata/TCGA_HNSCpaired_Norexpr_data_paired.csv",
                 header = T,row.names = 1, check.names=F)
data[1:3,1:4]

##       TCGA.CV.6943.01 TCGA.CV.6959.01 TCGA.CV.7438.11 TCGA.CV.7242.11
## AAAS        10.795406       11.198490       10.864833        10.89324
## AACS        12.033001       11.427610       12.173660        11.37317
## AADAC        4.857712        4.740191        8.864625        11.14658

保存为Tab键分割的格式,供estimate包使用。

# 安装ImageGP 包
# library(devtools)
# install_git("https://gitee.com/ct5869/ImageGP.git")
library(ImageGP)
sp_writeTable(data, file="./Rawdata/TCGA_HNSCpaired_Norexpr_data_paired.tsv")

筛选要绘制的基因

selected_gene <- c("S100A9","MT-CO2","MT-CO3","MT-CO1","KRT16","S100A8","KRT14","MT-CYB")

data <- data[selected_gene,]

读入分组数据

# 1.2 分组数据
phenotype <- read.csv("./Rawdata/TCGA_HNSCpaired.metadata.csv",header = T,row.names = 1,check.names=F, stringsAsFactors = T)
phenotype <- phenotype[,c("group","subject"),drop=F]
head(phenotype)

##                    group      subject
## TCGA.CV.6943.01    Tumor TCGA.CV.6943
## TCGA.CV.6959.01    Tumor TCGA.CV.6959
## TCGA.CV.7438.11 Nontumor TCGA.CV.7438
## TCGA.CV.7242.11 Nontumor TCGA.CV.7242
## TCGA.CV.7432.01    Tumor TCGA.CV.7432
## TCGA.CV.6939.11 Nontumor TCGA.CV.6939

绘图数据的格式准备

## 
# 2.1 把分组信息加进去
data_new <- data.frame(t(data))
data_new$sample = row.names(data_new)
data_new <- merge(data_new, phenotype,by.x = "sample",by.y = 0)

# 2.2 融合数据
data_new = melt(data_new)

## Using sample, group, subject as id variables

colnames(data_new) = c("sample","group","subject", "gene","expression")

head(data_new)

##            sample    group      subject   gene expression
## 1 TCGA.CV.6933.01    Tumor TCGA.CV.6933 S100A9   17.30560
## 2 TCGA.CV.6933.11 Nontumor TCGA.CV.6933 S100A9   10.83050
## 3 TCGA.CV.6934.01    Tumor TCGA.CV.6934 S100A9   13.57274
## 4 TCGA.CV.6934.11 Nontumor TCGA.CV.6934 S100A9   16.36757
## 5 TCGA.CV.6935.01    Tumor TCGA.CV.6935 S100A9   12.29116
## 6 TCGA.CV.6935.11 Nontumor TCGA.CV.6935 S100A9   20.22816

加载绘图函数

## 3. 这里加载包装好的2个函数,用于后面的统计和绘图
source("./assist/Function_for_violin_plot.R")

计算均值和误差

## 4. 绘图
# 4.1 这里注意到原图用的是误差线,这里用步骤三加载的函数,计算一下误差信息
Data_summary <- summarySE(data_new, measurevar="expression", groupvars=c("group","gene"))
head(Data_summary)

##      group   gene  N expression        sd        se        ci
## 1 Nontumor S100A9 43   18.02898 2.8049172 0.4277459 0.8632261
## 2 Nontumor MT.CO2 43   17.76159 0.8913531 0.1359301 0.2743180
## 3 Nontumor MT.CO3 43   18.18671 0.9300174 0.1418263 0.2862171
## 4 Nontumor MT.CO1 43   19.27698 1.0075457 0.1536493 0.3100768
## 5 Nontumor  KRT16 43   15.84541 3.5569291 0.5424266 1.0946612
## 6 Nontumor S100A8 43   17.17403 3.4525920 0.5265153 1.0625510

绘制分半小提琴图

# 4.2. 出图
  # 这个是我自己写的一个ggplot2的主题,可以自定义修改其中的参数
if(T){
  mytheme <- theme(plot.title = element_text(size = 12,color="black",hjust = 0.5),
                       axis.title = element_text(size = 12,color ="black"), 
                       axis.text = element_text(size= 12,color = "black"),
                       panel.grid.minor.y = element_blank(),
                       panel.grid.minor.x = element_blank(),
                       axis.text.x = element_text(angle = 45, hjust = 1 ),
                       panel.grid=element_blank(),
                       legend.position = "top",
                       legend.text = element_text(size= 12),
                       legend.title= element_text(size= 12)
) 
}

  # 自行调整下面的参数
gene_split_violin <- ggplot(data_new,aes(x= gene,y= expression,fill= group))+
  geom_split_violin(trim= F,color="white",scale = "area") + #绘制分半的小提琴图
  geom_point(data = Data_summary,aes(x= gene, y= expression),pch=19,
             position=position_dodge(0.5),size= 1)+ #绘制均值为点图
  geom_errorbar(data = Data_summary,aes(ymin = expression-ci, ymax= expression+ci), 
                width= 0.05, 
                position= position_dodge(0.5), 
                color="black",
                alpha = 0.8,
                size= 0.5) +
  scale_fill_manual(values = c("#56B4E9", "#E69F00"))+ 
  labs(y=("Log2 expression"),x=NULL,title = "Split violin") + 
  theme_bw()+ mytheme +
  stat_compare_means(aes(group = group),
                     label = "p.signif",
                     method = "anova",
                     label.y = max(data_new$expression),
                      hide.ns = T)
gene_split_violin;ggsave(gene_split_violin,
                         filename = "./Output/gene_split_violin.pdf",
                         height = 10,width = 16,units = "cm")

ggplot2实现分半小提琴图绘制基因表达谱和免疫得分_机器学习_02

用ESTIMATE算法计算免疫得分

library(estimate)

# eestimate 包安装
# library(utils)
# rforge <- "http://r-forge.r-project.org"
# install.packages("estimate", repos=rforge, dependencies=TRUE)

# 5. ESTIMATE计算免疫得分
# 5.1 输入txt格式的表达矩阵,输出ESIMATE计算结果
filterCommonGenes(input.f= "./Rawdata/TCGA_HNSCpaired_Norexpr_data_paired.tsv", 
                  output.f="./Output/TCGA_estimate.gct", id="GeneSymbol")

## [1] "Merged dataset includes 9219 genes (1193 mismatched)."

estimateScore(input.ds = "./Output/TCGA_estimate.gct",
              output.ds = "./Output/TCGA_estimate_score.gct", 
              platform="illumina")

## [1] "1 gene set: StromalSignature  overlap= 135"
## [1] "2 gene set: ImmuneSignature  overlap= 139"

ESTI_score <- read.table("./Output/TCGA_estimate_score.gct",skip = 2,header = T,row.names = 1)
ESTI_score <- as.data.frame(t(ESTI_score[2:ncol(ESTI_score)]))
head(ESTI_score)

##                 StromalScore ImmuneScore ESTIMATEScore
## TCGA.CV.6943.01     906.2923  1649.01369    2555.30599
## TCGA.CV.6959.01    -352.6656   318.22117     -34.44448
## TCGA.CV.7438.11   -1183.4705   276.89782    -906.57268
## TCGA.CV.7242.11   -1067.1461   -47.83809   -1114.98415
## TCGA.CV.7432.01   -1234.5253  -449.47317   -1683.99846
## TCGA.CV.6939.11     424.8381  -674.84391    -250.00579

# 5.2 融合数据
table(row.names(ESTI_score) == rownames(phenotype))

## 
## TRUE 
##   86

ESTI_score$group <- phenotype$group
ESTI_score$sample <- rownames(ESTI_score)

ESTI_score_New =  melt(ESTI_score)

## Using group, sample as id variables

colnames(ESTI_score_New)=c("group","sample","status","score")  #设置行名
head(ESTI_score_New)

##      group          sample       status      score
## 1    Tumor TCGA.CV.6943.01 StromalScore   906.2923
## 2    Tumor TCGA.CV.6959.01 StromalScore  -352.6656
## 3 Nontumor TCGA.CV.7438.11 StromalScore -1183.4705
## 4 Nontumor TCGA.CV.7242.11 StromalScore -1067.1461
## 5    Tumor TCGA.CV.7432.01 StromalScore -1234.5253
## 6 Nontumor TCGA.CV.6939.11 StromalScore   424.8381

# 5.3 计算误差线
ESTI_Data_summary <- summarySE(ESTI_score_New, measurevar="score", groupvars=c("group","status"))
head(ESTI_Data_summary)

##      group        status  N       score        sd        se       ci
## 1 Nontumor  StromalScore 43  -918.91119  837.0492 127.64881 257.6057
## 2 Nontumor   ImmuneScore 43  -210.02121  504.0363  76.86481 155.1195
## 3 Nontumor ESTIMATEScore 43 -1128.93240 1138.1268 173.56271 350.2637
## 4    Tumor  StromalScore 43  -517.35577  659.5859 100.58590 202.9906
## 5    Tumor   ImmuneScore 43   -67.37634  638.1790  97.32139 196.4025
## 6    Tumor ESTIMATEScore 43  -584.73211 1138.8398 173.67145 350.4832

ESTI_split_violin <- ggplot(ESTI_score_New,aes(x= status,y= score,fill= group))+
  geom_split_violin(trim= F,color="white",scale = "area") + #绘制分半的小提琴图
  geom_point(data = ESTI_Data_summary,aes(x= status, y= score),pch=19,
             position=position_dodge(0.4),size= 1)+ #绘制均值为点图
  geom_errorbar(data = ESTI_Data_summary,aes(ymin = score-ci, ymax= score+ci), 
                width= 0.05, 
                position= position_dodge(0.4), 
                color="black",
                alpha = 0.8,
                size= 0.5) +
  scale_fill_manual(values = c("#56B4E9", "#E69F00"))+ 
  labs(y=("ESTIMATE score"),x=NULL,title = "Split violin") + 
  theme_bw()+ mytheme +
  scale_x_discrete(labels=c("Stromal","Immune","ESTIMATE")) +
  stat_compare_means(aes(group = group),
                     label = "p.signif",
                     method = "wilcox",
                     label.y = max(ESTI_score_New$score),
                      hide.ns = T)
ESTI_split_violin; ggsave(ESTI_split_violin,filename = "./Output/ESTIMATE_plot.pdf", height = 10,width = 10,units = "cm")

ggplot2实现分半小提琴图绘制基因表达谱和免疫得分_机器学习_03

sessionInfo()

## R version 4.0.2 (2020-06-22)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 14393)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Chinese (Simplified)_China.936  LC_CTYPE=Chinese (Simplified)_China.936   
## [3] LC_MONETARY=Chinese (Simplified)_China.936 LC_NUMERIC=C                              
## [5] LC_TIME=Chinese (Simplified)_China.936    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] ImageGP_0.1.0   devtools_2.3.0  usethis_1.6.1   dplyr_1.0.0     ggpubr_0.4.0   
## [6] estimate_1.0.13 plyr_1.8.6      reshape2_1.4.4  ggplot2_3.3.2  
## 
## loaded via a namespace (and not attached):
##  [1] matrixStats_0.56.0   fs_1.4.2             RColorBrewer_1.1-2   rprojroot_1.3-2     
##  [5] rstan_2.21.1         tools_4.0.2          backports_1.1.7      R6_2.4.1            
##  [9] colorspace_1.4-1     withr_2.2.0          tidyselect_1.1.0     gridExtra_2.3       
## [13] prettyunits_1.1.1    processx_3.4.3       curl_4.3             compiler_4.0.2      
## [17] git2r_0.27.1         cli_2.0.2            desc_1.2.0           labeling_0.3        
## [21] scales_1.1.1         callr_3.4.3          stringr_1.4.0        digest_0.6.25       
## [25] StanHeaders_2.21.0-5 foreign_0.8-80       rmarkdown_2.3        rio_0.5.16          
## [29] htmltools_0.5.1.1    pkgconfig_2.0.3      sessioninfo_1.1.1    rlang_0.4.6         
## [33] readxl_1.3.1         rstudioapi_0.11      farver_2.0.3         generics_0.1.0      
## [37] jsonlite_1.7.0       zip_2.1.1            car_3.0-8            inline_0.3.15       
## [41] magrittr_1.5         loo_2.3.1            Rcpp_1.0.5           munsell_0.5.0       
## [45] fansi_0.4.1          abind_1.4-5          lifecycle_0.2.0      stringi_1.4.6       
## [49] yaml_2.2.1           carData_3.0-4        pkgbuild_1.1.0       grid_4.0.2          
## [53] parallel_4.0.2       forcats_0.5.0        crayon_1.3.4         haven_2.3.1         
## [57] hms_0.5.3            knitr_1.29           ps_1.3.3             pillar_1.4.6        
## [61] ggsignif_0.6.0       codetools_0.2-16     stats4_4.0.2         pkgload_1.1.0       
## [65] glue_1.4.1           evaluate_0.14        V8_3.2.0             data.table_1.14.0   
## [69] remotes_2.1.1        BiocManager_1.30.10  RcppParallel_5.0.2   vctrs_0.3.1         
## [73] testthat_2.3.2       cellranger_1.1.0     gtable_0.3.0         purrr_0.3.4         
## [77] tidyr_1.1.0          assertthat_0.2.1     xfun_0.15            openxlsx_4.1.5      
## [81] broom_0.7.0          rstatix_0.6.0        tibble_3.0.2         pheatmap_1.0.12     
## [85] memoise_1.1.0        ellipsis_0.3.1

参考资料:

  1. 《数据可视化——R语言ggplot2包绘制精美的小提琴图》
  2. 数据和代码下载:
    https://gitee.com/ct5869/shengxin-baodian/tree/master/TCGA
  3. 作者:赵法明
    编辑:生信宝典


ggplot2实现分半小提琴图绘制基因表达谱和免疫得分_可视化_04


标签:1.4,得分,1.1,##,0.3,library,ggplot2,2.3,分半
From: https://blog.51cto.com/u_16077014/6212615

相关文章

  • 更新ggplot2包失败,我如何解决的?
    说一个困扰我3小时的问题,是这样的,我手贱,想更新一下我的ggplot2_3.0.0版本,此时R版本是R_3.6.0;第一次我直接在Rstudio界面更新这个包, 然后他直接把我以前的ggplot2_3.0.0版本删除,重装,并报错安装失败,好吧,我自己装,结果报的错还是一样(导致我的ggplot2包没有了,很郁闷为啥不能先安......
  • 1255. 得分最高的单词集合
    题目链接:1255.得分最高的单词集合方法:暴力回溯解题思路观察可以发现,本题的数据量范围较小,使用暴力回溯不超过\(2^1\)\(^4\)次,需要注意的有,当选择一个单词时,必须保证当前提供的字符集合中剩余字符能够组成该单词\(check()\),选择以后将字符集合中对应字符数量减少\(destroy()\),......
  • 861. 翻转矩阵后的得分
    题目描述给了一个二维矩阵,矩阵的元素不是0就是1你可以进行任意次操作,让某行或者某列进行翻转元素的得分是每一行二进制的和问怎么操作可以让总得分最大?f1贪心+计算增量基本分析为啥可以贪心?(1)对每行来说,首位肯定是1最好,遮掩某些行需要翻转,某些不翻;(2)对同一列来说,大家的优先......
  • ggplot2中实现图片的镶嵌绘图
     001、生成测试子图library(ggplot2)library(dplyr)##依次生成测试子图p1、p2、p3、p4p1<-ggplot(mpg)+geom_point(aes(x=displ,y=hwy))+ggtitle("P......
  • ggplot2中实现多个绘图在一张画布中组合
     001、生成几个测试数据library(ggplot2)library(dplyr)p1<-ggplot(mpg)+geom_point(aes(x=displ,y=hwy))+ggtitle("P1")##测试图p1p2<-ggpl......
  • ggplot2中修改图例的位置
     001、默认绘图bp<-ggplot(PlantGrowth,aes(x=group,y=weight,fill=group))+geom_boxplot()##绘图bp##输出图片  002、上......
  • ggplot2绘图中修改图例的标题
     001、正常绘图library(ggplot2)bp<-ggplot(data=PlantGrowth,aes(x=group,y=weight,fill=group))+geom_boxplot()bp##显示绘图结果  002、修......
  • ggplot2绘图中隐藏图例标题
     001、正常绘图,显示图例library(ggplot2)bp<-ggplot(data=PlantGrowth,aes(x=group,y=weight,fill=group))+geom_boxplot()##绘图bp##显示绘图绘图......
  • ggplot2中绘图修改图例的顺序
     001、直接绘图效果:library(ggplot2)bp<-ggplot(data=PlantGrowth,aes(x=group,y=weight,fill=group))+geom_boxplot()##绘图bp##显示绘图结果绘......
  • ggplot2绘图中移除图例
     001、a、利用测试数据绘制箱线图library(ggplot2)bp<-ggplot(data=PlantGrowth,aes(x=group,y=weight,fill=group))+geom_boxplot()##绘图bp##显......