首页 > 其他分享 >2023省选武汉联测11

2023省选武汉联测11

时间:2023-04-20 21:12:20浏览次数:47  
标签:11 省选 max1 deep int 联测 now operatorname dis

T1 游戏

对于树上三点 \((u,v,w)\) ,一定存在一个点 \(p\) 满足 \(p\to u\) 与 \(p\to v\) 与 \(p\to w\) 的路径两两不重合,考虑枚举 \(p\) 计算答案,由于题目给定 \(\operatorname{dis}(u,v),\operatorname{dis}(u,w),\operatorname{dis}(v,w)\) ,因此我们首先用解方程的方法求解 \(\operatorname{dis}(u,p),\operatorname{dis}(v,p),\operatorname{dis}(w,p)\) ,不妨钦定 \(\operatorname{dis}(u,p)\ge\operatorname{dis}(v,p)\ge\operatorname{dis}(w,p)\) ,预处理每个点为根时最长的三条路径,满足三条路径两两不重合,对于每个点可以得到三元组 \((x,y,z)\) ,此时我们需要找到一个三元组满足 \(\operatorname{dis}(u,p)\le x,\operatorname{dis}(v,p)\le y,\operatorname{dis}(w,p)\le z\) ,经典的三维偏序问题,直接扫描线维护即可。

code

#include <cstdio>
#include <vector>
#include <algorithm>
#include <utility>
using namespace std;
const int max1 = 2e5;
const int inf = 0x3f3f3f3f;
int n, q;
vector <int> edge[max1 + 5];
struct Question
{
    int id, x, y, z;
    bool operator < ( const Question &A ) const
        { return x > A.x; }
} qus[max1 + 5], tmp[max1 + 5];
int siz[max1 + 5], deep[max1 + 5], father[max1 + 5], son[max1 + 5];
int dfn[max1 + 5], rk[max1 + 5], top[max1 + 5], dfs_clock;
vector < pair <int, int> > f[max1 + 5];
pair <int, int> max_dis[max1 + 5];
int id[max1 + 5], ans[max1 + 5][3];
void Find_Heavy_Edge ( int now, int fa, int depth )
{
    siz[now] = 1, deep[now] = depth, father[now] = fa, son[now] = 0;
    f[now].clear();
    f[now].push_back(make_pair(0, now));
    f[now].push_back(make_pair(0, now));
    f[now].push_back(make_pair(0, now));
    int max_siz = 0;
    for ( auto v : edge[now] )
    {
        if ( v == fa )
            continue;
        Find_Heavy_Edge(v, now, depth + 1);
        if ( siz[v] > max_siz )
            max_siz = siz[v], son[now] = v;
        siz[now] += siz[v];
        f[now].push_back(make_pair(f[v].front().first + 1, f[v].front().second));
        sort(f[now].begin(), f[now].end());
        reverse(f[now].begin(), f[now].end());
        f[now].resize(3);
    }
    return;
}
void Connect_Heavy_Edge ( int now, int ancestor )
{
    top[now] = ancestor;
    dfn[now] = ++dfs_clock;
    rk[dfs_clock] = now;
    if ( son[now] )
        Connect_Heavy_Edge(son[now], ancestor);
    for ( auto v : edge[now] )
    {
        if ( v == father[now] || v == son[now] )
            continue;
        Connect_Heavy_Edge(v, v);
    }
    return;
}
void Redfs ( int now, int fa )
{
    for ( auto v : edge[now] )
    {
        if ( v == fa )
            continue;
        max_dis[v] = make_pair(max_dis[now].first + 1, max_dis[now].second);
        for ( auto val : f[now] )
        {
            if ( val.second != -1 && dfn[val.second] >= dfn[v] && dfn[val.second] <= dfn[v] + siz[v] - 1 )
                continue;
            max_dis[v] = max(max_dis[v], make_pair(val.first + 1, val.second));
        }
        Redfs(v, now);
    }
    return;
}
bool Cmp ( const int &x, const int &y )
{
    return f[x].front() > f[y].front();
}
struct Segment_Tree
{
    #define lson(now) ( now << 1 )
    #define rson(now) ( now << 1 | 1 )
    pair <int, int> tree[max1 * 4 + 5];
    void Build ( int now, int l, int r )
    {
        tree[now] = make_pair(-inf, -1);
        if ( l == r )
            return;
        int mid = l + r >> 1;
        Build(lson(now), l, mid);
        Build(rson(now), mid + 1, r);
        return;
    }
    void Insert ( int now, int l, int r, int pos, const pair <int, int> &val )
    {
        if ( l == r )
            { tree[now] = max(tree[now], val); return; }
        int mid = l + r >> 1;
        if ( pos <= mid )
            Insert(lson(now), l, mid, pos, val);
        else
            Insert(rson(now), mid + 1, r, pos, val);
        tree[now] = max(tree[lson(now)], tree[rson(now)]);
        return;
    }
    pair <int, int> Query ( int now, int l, int r, int ql, int qr )
    {
        if ( l >= ql && r <= qr )
            return tree[now];
        int mid = l + r >> 1;
        pair <int, int> ans = make_pair(-inf, -1);
        if ( ql <= mid )
            ans = max(ans, Query(lson(now), l, mid, ql, qr));
        if ( qr > mid )
            ans = max(ans, Query(rson(now), mid + 1, r, ql, qr));
        return ans;
    }
}Tree;
int Get_Lca ( int u, int v )
{
    while ( top[u] != top[v] )
    {
        if ( deep[top[u]] < deep[top[v]] )
            swap(u, v);
        u = father[top[u]];
    }
    if ( deep[u] > deep[v] )
        swap(u, v);
    return u;
}
int Get_Dis ( int u, int v )
{
    return deep[u] + deep[v] - deep[Get_Lca(u, v)] * 2;
}
int Kth_Ancestor ( int u, int k )
{
    while ( deep[u] - deep[top[u]] + 1 <= k )
        k -= deep[u] - deep[top[u]] + 1, u = father[top[u]];
    return rk[dfn[u] - k];
}
int Get_Point ( int u, int v, int k )
{
    int lca = Get_Lca(u, v);
    if ( deep[v] - deep[lca] >= k )
        return Kth_Ancestor(v, k);
    k = deep[u] + deep[v] - deep[lca] - deep[lca] - k;
    return Kth_Ancestor(u, k);
}
int main ()
{
    freopen("game.in", "r", stdin);
    freopen("game.out", "w", stdout);
    int sum, d[3], dis[3];
    scanf("%d", &n);
    for ( int i = 1, u, v; i <= n - 1; i ++ )
        scanf("%d%d", &u, &v), edge[u].push_back(v), edge[v].push_back(u);
    scanf("%d", &q);
    for ( int i = 1; i <= q; i ++ )
    {
        qus[i].id = i;
        scanf("%d%d%d", &qus[i].x, &qus[i].y, &qus[i].z);
        sum = qus[i].x + qus[i].y + qus[i].z >> 1;
        d[0] = sum - qus[i].x, d[1] = sum - qus[i].y, d[2] = sum - qus[i].z;
        sort(d, d + 3);
        reverse(d, d + 3);
        tmp[i].id = i;
        tmp[i].x = d[0], tmp[i].y = d[1], tmp[i].z = d[2];
    }
    Find_Heavy_Edge(1, 0, 1);
    Connect_Heavy_Edge(1, 1);
    max_dis[1] = make_pair(-inf, -1);
    Redfs(1, 0);
    for ( int i = 1; i <= n; i ++ )
    {
        f[i].push_back(max_dis[i]);
        sort(f[i].begin(), f[i].end());
        reverse(f[i].begin(), f[i].end());
        f[i].resize(3);
        id[i] = i;
    }
    sort(id + 1, id + 1 + n, Cmp);
    sort(tmp + 1, tmp + 1 + q);
    Tree.Build(1, 0, n);
    int now = 1;
    for ( int i = 1; i <= q; i ++ )
    {
        while ( now <= n && f[id[now]].front().first >= tmp[i].x )
        {
            if ( f[id[now]][1].first >= 0 && f[id[now]][2].first >= 0 )
                Tree.Insert(1, 0, n, f[id[now]][1].first, make_pair(f[id[now]][2].first, id[now]));
            ++now;
        }
        int k = Tree.Query(1, 0, n, tmp[i].y, n).second;
        ans[tmp[i].id][0] = Get_Point(f[k][0].second, k, tmp[i].x);
        ans[tmp[i].id][1] = Get_Point(f[k][1].second, k, tmp[i].y);
        ans[tmp[i].id][2] = Get_Point(f[k][2].second, k, tmp[i].z);
    }
    for ( int i = 1; i <= q; i ++ )
    {
        d[0] = 0, d[1] = 1, d[2] = 2;
        do
        {
            dis[0] = Get_Dis(ans[i][d[0]], ans[i][d[1]]), dis[1] = Get_Dis(ans[i][d[0]], ans[i][d[2]]), dis[2] = Get_Dis(ans[i][d[1]], ans[i][d[2]]);
            if ( dis[0] == qus[i].x && dis[1] == qus[i].y && dis[2] == qus[i].z )
            {
                printf("%d %d %d\n", ans[i][d[0]], ans[i][d[1]], ans[i][d[2]]);
                break;
            }
        } while ( next_permutation(d, d + 3) );
    }
    return 0;
}

T2 马戏团里你最忙

首先考虑 dp ,设 \(f_{i,s}\) 表示当前考虑了前 \(i\) 个数,第 \(i\) 个数为 \(s\) 时价值的期望,设 \(g_{i,s}\) 表示概率,转移有:

\[\begin{aligned} p(f_{i,s}+g_{i,s}C_{t\operatorname{or}s})&\to f_{i+1,t\operatorname{or}s}\\ (1-p)(f_{i,s}+g_{i,s}C_{t\operatorname{and}s})&\to f_{i+1,t\operatorname{and}s}\\ pg_{i,s}&\to g_{i+1,s\operatorname{or}t}\\ (1-p)g_{i,s}&\to g_{i+1,s\operatorname{and}t} \end{aligned} \]

显然转移可以用 FWT 优化。

题解非常神奇的发现 \(f_{i,s}=\sum_{j=1}^m a_jf_{i-j,s}\) ,这满足线性递推,并且 \(m\) 的范围为 \(O(n)\) ,因此我们可以暴力求解 \(f_{i,s}\) 中 \(i\) 的前 \(2m\) 项,建立线性方程组,高斯消元求解 \(a\) ,然后矩阵快速幂即可。

code

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <ctime>
using namespace std;
const int max1 = 17, max2 = 1 << 17;
const int mod = 998244353;
int n, p, k, x0, inv, mid, lim, c[max2 + 5];
int Quick_Power ( int base, int p )
{
    int res = 1;
    while ( p )
    {
        if ( p & 1 )
            res = 1LL * res * base % mod;
        p >>= 1;
        base = 1LL * base * base % mod;
    }
    return res;
}
struct Poly
    { int f[max2 + 5]; };
void FWT_OR ( Poly &A )
{
    for ( int i = 0; i < n; i ++ )
        for ( int j = 0; j < 1 << i; j ++ )
            for ( int k = 0; k < 1 << n; k += 1 << i + 1 )
                A.f[1 << i | j | k] = ( 0LL + A.f[1 << i | j | k] + A.f[1 << i | j | k] + A.f[j | k] ) % mod;
    return;
}
void FWT_AND ( Poly &A )
{
    for ( int i = 0; i < n; i ++ )
        for ( int j = 0; j < 1 << i; j ++ )
            for ( int k = 0; k < 1 << n; k += 1 << i + 1 )
                A.f[j | k] = ( 0LL + A.f[1 << i | j | k] + A.f[j | k] + A.f[j | k] ) % mod;
    return;
}
void OR ( const Poly &A, const Poly &B, Poly &C )
{
    for ( int s = 0; s < 1 << n; s ++ )
        C.f[s] = B.f[s];
    FWT_OR(C);
    for ( int s = 0; s < 1 << n; s ++ )
        C.f[s] = 1LL * C.f[s] * A.f[s] % mod;
    return;
}
void AND ( const Poly &A, const Poly &B, Poly &C )
{
    for ( int s = 0; s < 1 << n; s ++ )
        C.f[s] = B.f[s];
    FWT_AND(C);
    for ( int s = 0; s < 1 << n; s ++ )
        C.f[s] = 1LL * C.f[s] * A.f[s] % mod;
    return;
}
Poly A, B, C, D, tmp1, tmp2, tmp3, tmp4, F[75], G[75];
struct Matrix
{
    int matrix[75][75];
    void Identity ()
    {
        for ( int i = 1; i <= mid; i ++ )
            for ( int j = 1; j <= mid; j ++ )
                matrix[i][j] = i == j;
        return;
    }
    Matrix operator * ( const Matrix &A ) const
    {
        Matrix res;
        for ( int i = 1; i <= mid; i ++ )
        {
            for ( int j = 1; j <= mid; j ++ )
            {
                res.matrix[i][j] = 0;
                for ( int k = 1; k <= mid; k ++ )
                    res.matrix[i][j] = ( res.matrix[i][j] + 1LL * matrix[i][k] * A.matrix[k][j] ) % mod;
            }
        }
        return res;
    }
    void Gauss ()
    {
        int tmp = mid;
        for ( int i = 1; i <= mid; i ++ )
        {
            int pos = i;
            for ( int j = i + 1; j <= mid; j ++ )
                if ( matrix[j][i] > matrix[pos][i] )
                    pos = j;
            swap(matrix[pos], matrix[i]);
            if ( !matrix[i][i] )
                { mid = i - 1; break; }
            for ( int j = 1; j <= mid; j ++ )
            {
                if ( j == i )
                    continue;
                int P = 1LL * matrix[j][i] * Quick_Power(matrix[i][i], mod - 2) % mod;
                for ( int w = 1; w <= mid + 1; w ++ )
                    matrix[j][w] = ( matrix[j][w] - 1LL * matrix[i][w] * P % mod + mod ) % mod;
            }
        }
        for ( int i = 1; i <= mid; i ++ )
            matrix[i][i] = 1LL * matrix[i][tmp + 1] * Quick_Power(matrix[i][i], mod - 2) % mod;
        lim = mid << 1;
        return;
    }
}val;
Matrix Quick_Power ( Matrix base, int p )
{
    Matrix res;
    res.Identity();
    while ( p )
    {
        if ( p & 1 )
            res = res * base;
        p >>= 1;
        base = base * base;
    }
    return res;
}
int main ()
{
    freopen("busy.in", "r", stdin);
    freopen("busy.out", "w", stdout);
    scanf("%d%d%d%d", &n, &p, &k, &x0);
    inv = Quick_Power(1 << n, mod - 2);
    for ( int s = 0; s < 1 << n; s ++ )
        scanf("%d", &c[s]);
    for ( int s = 0; s < 1 << n; s ++ )
    {
        A.f[s] = 1LL * p * inv % mod;
        B.f[s] = 1LL * ( 1 - p + mod ) * inv % mod;
        C.f[s] = 1LL * A.f[s] * c[s] % mod;
        D.f[s] = 1LL * B.f[s] * c[s] % mod;
        F[0].f[s] = 0;
        G[0].f[s] = s == x0;
    }
    mid = 36, lim = mid << 1;
    for ( int i = 1; i <= lim; i ++ )
    {
        OR(A, F[i - 1], tmp1), OR(C, G[i - 1], tmp2), AND(B, F[i - 1], tmp3), AND(D, G[i - 1], tmp4);
        for ( int s = 0; s < 1 << n; s ++ )
            F[i].f[s] = ( 0LL + tmp1.f[s] + tmp2.f[s] + tmp3.f[s] + tmp4.f[s] ) % mod;
        OR(A, G[i - 1], tmp1), AND(B, G[i - 1], tmp2);
        for ( int s = 0; s < 1 << n; s ++ )
            G[i].f[s] = ( tmp1.f[s] + tmp2.f[s] ) % mod;
    }
    cerr << "ok1 " << (double)clock() / CLOCKS_PER_SEC << endl;
    for ( int i = mid + 1; i <= lim; i ++ )
    {
        for ( int j = i - 1; j >= i - mid; j -- )
            val.matrix[i - mid][i - j] = F[j].f[0];
        val.matrix[i - mid][mid + 1] = F[i].f[0];
    }
    val.Gauss();
    for ( int i = 1; i <= mid; i ++ )
        val.matrix[1][i] = val.matrix[i][i];
    for ( int i = 2; i <= mid; i ++ )
        val.matrix[i][i - 1] = 1, val.matrix[i][i] = 0;
    cerr << "ok2 " << (double)clock() / CLOCKS_PER_SEC << endl;
    val = Quick_Power(val, k - 1);
    cerr << "ok3 " << (double)clock() / CLOCKS_PER_SEC << endl;
    for ( int s = 0; s < 1 << n; s ++ )
    {
        int ans = 0;
        for ( int i = 1; i <= mid; i ++ )
            ans = ( ans + 1LL * val.matrix[mid][i] * F[mid - i + 1].f[s] ) % mod;
        printf("%d ", ans);
    }
    printf("\n");
    return 0;
}

T3 树

由于答案设计加法和异或运算,一定难以进行维护,因此我们对位分开进行考虑,首先考虑一条链的情况,设 \(f_{i,j}\) 表示从第 \(i\) 个位置开始向后走 \(2^j\) 步中所有点关于 \(i\) 的距离与点权异或值的和,比较显然转移有:

\[f_{i,j}=f_{i,j-1}+f_{i+2^{j-1},j-1}+\sum_{k=i+2^{j-1}}^{i+2^j-1}2^{j-1}-2^j[v_k第j-1位为1] \]

考虑树上的情况,先给一张图:

仍然沿用链上求解的思路,设 \(f_{u,i}\) 表示从 \(u\) 节点一直走最靠右的儿子为界,同层的左侧节点的权值之和,此时一次查询显然可以被差分为 \(u\) 的贡献减去 \(v\) 的贡献,特殊的如果一个节点没有右儿子,这个节点的右儿子被定义为如果这个节点有右儿子时,右儿子 bfs 序的上一个节点,例如 \(x\) 的右儿子为 \(y\) ,简单 dp 求解即可。

code

#include <cstdio>
#include <vector>
#include <queue>
#include <iostream>
using namespace std;
const int max1 = 1e6;
int n, q, val[max1 + 5], father[max1 + 5];
vector <int> son[max1 + 5];
queue <int> que;
int bfn[max1 + 5], rk[max1 + 5], bfs_clock, deep[max1 + 5], sum_cnt[20], size[max1 + 5], cnt[max1 + 5][20], Rson[max1 + 5][20];
long long f[max1 + 5][20], sum_val[max1 + 5];
int Get_Rson ( int u, int k )
{
    for ( int i = 19; i >= 0; i -- )
        if ( ( 1 << i ) <= k && Rson[u][i] )
            u = Rson[u][i], k -= 1 << i;
    return u;
}
long long Solve ( int u, int k, int R )
{
    int t = __lg(k);
    long long ans = f[u][t];
    if ( k - ( 1 << t ) )
        ans += Solve(Rson[u][t], k - ( 1 << t ), R) + ( 1LL << t ) * ( size[Rson[u][t]] - size[Rson[R][0]] ) - ( 1LL << t + 1 ) * ( cnt[Rson[u][t]][t] - cnt[Rson[R][0]][t] );
    return ans;
}
int main ()
{
    freopen("tree.in", "r", stdin);
    freopen("tree.out", "w", stdout);
    scanf("%d", &n);
    for ( int i = 1; i <= n; i ++ )
        scanf("%d", &val[i]);
    for ( int i = 2; i <= n; i ++ )
        scanf("%d", &father[i]), son[father[i]].push_back(i);
    cerr << "ok0 " << (double) clock() / CLOCKS_PER_SEC << endl;
    que.push(1);
    while ( !que.empty() )
    {
        int now = que.front();
        que.pop();
        bfn[now] = ++bfs_clock;
        rk[bfs_clock] = now;
        int pre = rk[bfn[now] - 1];
        deep[now] = deep[father[now]] + 1;
        if ( deep[now] != deep[pre] )
            for ( int i = 0; i < 20; i ++ )
                sum_cnt[i] = 0;
        for ( int i = 0; i < 20; i ++ )
            sum_cnt[i] += val[now] >> i & 1;
        sum_val[deep[now]] += val[now];
        size[now] = 1;
        if ( deep[now] == deep[pre] )
            size[now] += size[pre];
        for ( int i = 0; i < 20; i ++ )
            cnt[now][i] = sum_cnt[i];
        if ( son[now].empty() )
            Rson[now][0] = deep[now] == deep[pre] ? Rson[pre][0] : 0;
        else
            Rson[now][0] = son[now].back();
        f[now][0] = sum_val[deep[now]];
        for ( auto v : son[now] )
            que.push(v);
    }
    cerr << "ok1 " << (double) clock() / CLOCKS_PER_SEC << endl;
    for ( int w = n; w >= 1; w -- )
    {
        int now = rk[w];
        size[now] += size[Rson[now][0]];
        for ( int i = 0; i < 20; i ++ )
            cnt[now][i] += cnt[Rson[now][0]][i];
    }
    cerr << "ok1.333" << (double) clock() / CLOCKS_PER_SEC << endl;
    for ( int w = n; w >= 1; w -- )
    {
        int now = rk[w];
        for ( int i = 1; Rson[Rson[now][i - 1]][i - 1]; i ++ )
            Rson[now][i] = Rson[Rson[now][i - 1]][i - 1];
    }
    cerr << "ok1.666" << (double) clock() / CLOCKS_PER_SEC << endl;
    for ( int w = n; w >= 1; w -- )
    {
        int now = rk[w];
        for ( int i = 1; Rson[father[Rson[now][i - 1]]][i - 1]; i ++ )
            f[now][i] = f[now][i - 1] + f[Rson[now][i - 1]][i - 1] + ( 1LL << i - 1 ) * ( size[Rson[now][i - 1]] - size[Rson[now][i]] ) - ( 1LL << i ) * ( cnt[Rson[now][i - 1]][i - 1] - cnt[Rson[now][i]][i - 1] );
    }
    cerr << "ok2 " << (double) clock() / CLOCKS_PER_SEC << endl;
    int u, k, R;
    long long ans;
    scanf("%d", &q);
    while ( q -- )
    {
        scanf("%d%d", &u, &k);
        R = Get_Rson(u, k);
        ans = Solve(u, min(k + 1, deep[R] - deep[u] + 1), R);
        if ( deep[rk[bfn[u] - 1]] == deep[u] )
        {
            u = rk[bfn[u] - 1];
            R = Get_Rson(u, k);
            ans -= Solve(u, min(k + 1, deep[R] - deep[u] + 1), R);
        }
        printf("%lld\n", ans);
    }
    cerr << "ok3 " << (double) clock() / CLOCKS_PER_SEC << endl;
    return 0;
}

标签:11,省选,max1,deep,int,联测,now,operatorname,dis
From: https://www.cnblogs.com/KafuuChinocpp/p/17338345.html

相关文章

  • 卸载Win11小组件
    小组件就是Win+w的功能,也是widgets.exe的原型以管理员身份运行cmd,运行以下命令wingetuninstallMicrosoftWindows.Client.WebExperience_cw5n1h2txyewy之后Win+w就无效了要重新安装就wingetinstall9MSSGKG348SP......
  • 下载JDK11
    前提:目前学习使用的是jdk8,对于最新的学习来说有点缺陷,部分新的API,jdk8还不具备。于是记录一下,下载jdk11。·官网 oracle的jdk11下载地址一、下载安装jdk111、链接进入,如下图2、往下滑,就是jdk11的各个副版本【本文选jdk11.0.18】【先找到对应副版本,再下滑,找到合适......
  • Eddy's picture 1162
    Eddy'spictureTimeLimit:2000/1000MS(Java/Others)    MemoryLimit:65536/32768K(Java/Others)TotalSubmission(s):8101    AcceptedSubmission(s):4101ProblemDescriptionEddybeginstolikepaintingpicturesrecently,heissureofhim......
  • PAT Basic 1115. 裁判机
    PATBasic1115.裁判机1.题目描述:有一种数字游戏的规则如下:首先由裁判给定两个不同的正整数,然后参加游戏的几个人轮流给出正整数。要求给出的数字必须是前面已经出现的某两个正整数之差,且不能等于之前的任何一个数。游戏一直持续若干轮,中间有写重复或写错的人就出局。本题要......
  • 11、Markdown 转义字符语法
    11、Markdown转义字符语法要显示原本用于格式化Markdown文档的字符,请在字符前面添加反斜杠字符\。\*Withoutthebackslash,thiswouldbeabulletinanunorderedlist.渲染效果如下:Withoutthebackslash,thiswouldbeabulletinanunorderedlist.可做转......
  • P3008 [USACO11JAN]Roads and Planes G
    P3008[USACO11JAN]RoadsandPlanesG思路按照分连通块的方法进行计算,并且如果不是本连通块的点,不能在现在的本次dfs中求解最小值。要一个一个的联通快进行标记。/*不能直接走disj的话,缩点的思想很重要首先尽量不要使用spfa进行走图,可能会卡对道路进行求连通块,对航线求度数......
  • 11-CSS3属性详解(一)
    title:11-CSS3属性详解(一)publish:true前言我们在上一篇文章中学习了CSS3的选择器,本文来学一下CSS3的一些属性。本文主要内容:文本盒模型中的box-sizing属性处理兼容性问题:私有前缀边框背景属性渐变文本text-shadow:设置文本的阴影格式举例: text-s......
  • 11-HTML5详解(三)
    title:11-HTML5详解(三)publish:trueWeb存储随着互联网的快速发展,基于网页的应用越来越普遍,同时也变的越来越复杂,为了满足各种各样的需求,会经常性在本地存储大量的数据,传统方式我们以document.cookie来进行存储的,但是由于其存储大小只有4k左右,并且解析也相当的复杂,给开发带......
  • 修路方案 118 (prim判断最小生成树的不唯一性)
    修路方案3000ms |          内存限制:655355南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路。现在已经知道哪些城市之间可以修路,如果修路,花费是多少。现在,军师小工已经找到了一种修路的方案,能够使各个......
  • Eddy's digital Roots 1163 (数学+九余数定理)
    Eddy'sdigitalRootsTimeLimit:2000/1000MS(Java/Others)   MemoryLimit:65536/32768K(Java/Others)TotalSubmission(s):5278   AcceptedSubmission(s):2952ProblemDescriptionThedigitalrootofapositiveintegerisfoundbysumming......