什么是悲观锁?
悲观锁总是假设最坏的情况,认为共享资源每次被访问的时候就会出现问题(比如共享数据被修改),所以每次在获取资源操作的时候都会上锁,这样其他线程想拿到这个资源就会阻塞直到锁被上一个持有者释放。
像 Java 中synchronized
和ReentrantLock
等独占锁就是悲观锁思想的实现。
public void performSynchronisedTask() { synchronized (this) { // 需要同步的操作 } } private Lock lock = new ReentrantLock(); lock.lock(); try { // 需要同步的操作 } finally { lock.unlock(); }
高并发的场景下,激烈的锁竞争会造成线程阻塞,大量阻塞线程会导致系统的上下文切换,增加系统的性能开销。并且,悲观锁还可能会存在死锁问题,影响代码的正常运行。
什么是乐观锁?
乐观锁总是假设最好的情况,认为共享资源每次被访问的时候不会出现问题,线程可以不停地执行,无需加锁也无需等待,只是在提交修改的时候去验证对应的资源(也就是数据)是否被其它线程修改了(具体方法可以使用版本号机制或 CAS 算法)。
在 Java 中java.util.concurrent.atomic
包下面的原子变量类(比如AtomicInteger
、LongAdder
)就是使用了乐观锁的一种实现方式 CAS 实现的。
// LongAdder 在高并发场景下会比 AtomicInteger 和 AtomicLong 的性能更好 // 代价就是会消耗更多的内存空间(空间换时间) LongAdder sum = new LongAdder(); sum.increment();高并发的场景下,乐观锁相比悲观锁来说,不存在锁竞争造成线程阻塞,也不会有死锁的问题,在性能上往往会更胜一筹。但是,如果冲突频繁发生(写占比非常多的情况),会频繁失败和重试,这样同样会非常影响性能,导致 CPU 飙升。 应用场景: 悲观锁通常多用于写比较多的情况下(多写场景,竞争激烈),这样可以避免频繁失败和重试影响性能,悲观锁的开销是固定的。不过,如果乐观锁解决了频繁失败和重试这个问题的话(比如
LongAdder
),也是可以考虑使用乐观锁的,要视实际情况而定。
乐观锁通常多于写比较少的情况下(多读场景,竞争较少),这样可以避免频繁加锁影响性能。不过,乐观锁主要针对的对象是单个共享变量(参考java.util.concurrent.atomic
包下面的原子变量类)。
如何实现乐观锁:
乐观锁一般会使用版本号机制或 CAS 算法实现,CAS 算法相对来说更多一些。
标签:场景,CAS,乐观,LongAdder,线程,悲观
From: https://www.cnblogs.com/cjhtxdy/p/17335133.html