为了验证 TDengine 3.0 的性能,我们使用第三方基准性能测试平台 TSBS(Time Series Benchmark Suite) 中针对 DevOps 的 cpu-only 五个场景作为基础数据集,在相同的 AWS 云环境下对 TDengine 3.0 和 InfluxDB 1.8(该版本是 InfluxDB 能够运行 TSBS 框架的最新版本) 进行了对比分析。在本篇文章中,我们将从写入、存储、查询、及资源开销等几大维度对测试结果进行汇总分析,给到大家参考。
我们采用下方 TimescaleDB vs. InfluxDB 对比报告中推荐的方式配置 InfluxDB,将缓冲区配置为 80G,以便 1000W 设备写入时能够顺利进行,同时开启 Time Series Index(TSI)。配置系统在系统插入数据完成 30s 后开始数据压缩。
TimescaleDB vs. InfluxDB: Purpose Built Differently for Time-Series Data:
关于系统的配置详情、如何一键复现测试结果及详细的测试数据介绍等内容,大家可参考《一键获取测试脚本,轻松验证“TSBS 时序数据库性能基准测试报告”》、《TSBS 是什么?为什么时序数据库 TDengine 会选择它作为性能对比测试平台?》两篇文章,本文便不再赘述。
写入性能最高达到 InfluxDB 的 10.6 倍
总体而言,在 TSBS 报告全部的 cpu-only 五个场景中,时序数据库(Time Series Database)TDengine 写入性能均优于 InfluxDB。相比 InfluxDB,TDengine 写入速度最领先的场景是其 10.6 倍(场景五),最少也是 3.0 倍(场景一)。此外,TDengine 在写入过程中消耗了最少 CPU 资源和磁盘 IO 开销。下面看一下具体分析:
不同场景下写入性能对比
不同场景下写入性能的对比(metrics/sec. 数值越大越好)从上图可以看到,在全部五个场景中,TDengine 的写入性能全面超越 InfluxDB。TDengine 在场景五中写入性能是 InfluxDB 的 10.63 倍,在差距最小的场景一中也有 3.01 倍。
写入过程资源消耗对比
数据写入速度并不能够全面的反映 TDengine 和 InfluxDB 在不同场景下数据写入的整体表现。为此我们以 1,000,000 devices × 10 metrics (场景四)为例,检查数据写入过程中的服务器和客户端(包括客户端与服务器)的整体负载状况,并以此来对比 TDengine 和 InfluxDB 在写入过程中服务器/客户端节点的资源占用情况,这里的资源占用主要包括服务器端的 CPU 开销/磁盘 IO 开销和客户端 CPU 开销。
服务端 CPU 开销
下图展示了两大数据库在场景四写入过程中服务器端 CPU 负载状况。可以看到,TDengine 和 InfluxDB 在返回给客户端写入完成消息以后,都还继续使用服务器的资源进行相应的处理工作,InfluxDB 使用了相当多的 CPU 资源,瞬时峰值甚至使用了全部的 CPU 资源,其写入负载较高,并且其持续时间远长于 TDengine。两个系统对比,TDengine 对服务器的 CPU 需求最小,峰值也仅使用了 17% 左右的服务器 CPU 资源。由此可见,TDengine 独特的数据模型对于时序数据写入不仅在性能上,在整体的资源开销上也具有非常大的优势。
写入过程中服务器 CPU 开销磁盘 I/O 对比
下图展示了 1,000,000 devices × 10 metrics (场景四)数据写入过程中两大数据库在服务器端磁盘的写入状态。可以看到,结合着服务器端 CPU 开销表现,其 IO 动作与 CPU 呈现同步的活跃状态。
写入过程中服务器 IO 开销在写入相同规模的数据集情况下,TDengine 在写入过程中对于磁盘写入能力的占用远小于 InfluxDB,写入过程只占用了部分磁盘写入能力(125MiB/Sec. 3000IOPS)。从上图能看到,对于两大数据库,数据写入过程中磁盘的 IO 瓶颈都是确实存在的。但 InfluxDB 长时间消耗完全部的磁盘写入能力,远远超过了 TDengine 对磁盘写入能力的需求。
客户端 CPU 开销
写入过程中客户端 CPU 开销从上图可以看到,客户端上 TDengine 对 CPU 的需求是大于 InfluxDB 的。整体来说,在整个写入过程中,InfluxDB 客户端负载计算资源占用较低,对客户端压力小,这是因为其写入的压力基本上完全集中在服务端,但这种模式很容易导致服务端成为瓶颈。而 TDengine 在客户端的开销最大,峰值瞬间达到了 56%,然后快速回落。综合服务器与客户端的资源开销来看,TDengine 写入持续时间更短,在系统整体 CPU 开销上 TDengine 仍然具有相当大的优势。
查询性能最高达到 InfluxDB 的 37 倍
在查询性能的评估上,我们使用场景一和场景二作为基准数据集。为了让 InfluxDB 发挥出更好的查询性能,我们开启 InfluxDB 的 TSI (time series index)。在整个查询对比中,TDengine 数据库的虚拟节点数量(vnodes)保持为默认的 6 个,其他的数据库参数配置为默认值。
总体来说,查询方面,在场景一(只包含 4 天的数据)与场景二的 15 个不同类型的查询中,TDengine 的查询平均响应时间是全面优于 InfluxDB 的,而且在复杂查询上优势更为明显,同时具有最小的计算资源开销。相比 InfluxDB,场景一中 TDengine 查询性能是其 1.9 ~ 37.0 倍,场景二中 TDengine 查询性能是其 1.8 ~ 34.2 倍。
4,000 devices × 10 metrics查询性能对比
由于部分类型(分类标准参见 TimescaleDB vs. InfluxDB 对比报告)单次查询响应时间非常短,为了更加准确地测量每个查询场景的较为稳定的响应时间,我们将单个查询运行次数提升到 5,000 次,然后使用 TSBS 自动统计并输出结果,最后结果是 5,000 次查询的算数平均值,使用并发客户端 Workers 数量为 8。首先我们提供场景二(4,000 设备)的查询性能对比结果:
下面我们对每个查询结果做一定的分析说明:
4000 devices × 10 metrics Simple Rollups 查询响应时间 (数值越小越好)由于 Simple Rollups 的整体查询响应时间非常短,制约查询响应时间主体因素并不是查询涉及的数据规模,即这种类型查询的瓶颈并不是数据规模。但是 TDengine 仍然在所有类型的查询响应时间上优于 InfluxDB,具体的数值比较请参见上表中的详细数据表格。
4000 devices × 10 metrics Aggregates 查询响应时间 (数值越小越好)在 Aggregates 类型的查询中,我们看到 TDengine 查询性能相比于 InfluxDB 有较大优势,TDengine cpu-max-all-8 类型的查询性能是 InfluxDB 的 7 倍。
4000 devices × 10 metrics Double rollups 查询响应时间 (数值越小越好)在 Double-rollups 类型查询中, TDengine 同样展现出巨大的性能优势,以查询响应时间来度量,在 double-groupby-5 查询上 TDengine 是 InfluxDB 的 26 倍,double-groupby-all 上是其 34 倍。
4000 devices × 10 metrics Thresholds 查询 high-cpu-1 响应时间 (数值越小越好) 4000 devices × 10 metrics Thresholds 查询 high-cpu-all 响应时间 (数值越小越好)上面两图是 threshold 类型的查询对比,TDengine 的查询响应时间均显著低于 InfluxDB。在 high-cpu-all 类型的查询上,TDengine 的性能是 InfluxDB 的 15 倍。
4000 devices × 10 metrics Complex queries 查询响应时间 (数值越小越好)对于 Complex-queries 类型的查询,TDengine 两个查询均大幅领先 InfluxDB。在 lastpoint 查询中,查询性能是 InfluxDB 的 21倍;在 groupby-orderby-limit 场景中查询性能是 InfluxDB 的 15 倍。
资源开销对比
由于部分查询持续时间特别短,因此我们并不能完整地看到查询过程中服务器的 IO/CPU/网络情况。为此我们针对场景二以 Double rollups 类别中的 double-groupby-5 查询为例,执行 1,000 次查询,记录 TDengine 和 InfluxDB 在查询执行的整个过程中服务器 CPU、内存、网络的开销并进行对比。
查询过程中服务器 CPU 开销从上图可以看到,TDengine 和 InfluxDB 在整个查询过程中 CPU 的使用均较为平稳。TDengine 在查询过程中整体 CPU 占用约 80%,使用的 CPU 资源较高,InfluxDB 稳定的 CPU 占用较小,约 27 %(但是有较多的瞬时冲高)。从整体 CPU 开销上来看,虽然 InfluxDB 瞬时 CPU 开销大部分是较低的,但是其完成查询持续时间最长,所以整体 CPU 资源消耗最多。由于 TDengine 完成全部查询的时间仅是 InfluxDB 的 1/20,虽然 CPU 稳定值是 InfluxDB 的 2 倍多,但整体的 CPU 计算时间消耗只有其 1/10 。
服务器内存状况
查询过程中服务器内存情况如上图所示,在整个查询过程中,TDengine 与 InfluxDB 的内存均维持在一个相对平稳的状态。
服务器网络带宽
查询过程中网络占用情况上图展示了查询过程中服务器端上行和下行的网络带宽情况,负载状况基本上和 CPU 状况相似。TDengine 网络带宽开销最高,因为在最短的时间内就完成了全部查询,需要将查询结果返回给客户端。InfluxDB 网络带宽开销最低,持续时间也较长。
3,100 devices × 10 metrics 查询性能对比
对于场景一(100 devices x 10 metrics),TSBS 的 15 个查询对比结果如下:
如上表所示,在更小规模的数据集(100设备)上的查询对比可以看到,整体上 TDengine 同样展现出极好的性能,在全部的查询语句中全面优于 InfluxDB,部分查询性能超过 InfluxDB 37 倍。
InfluxDB 占用的磁盘空间最高达到 TDengine 的 4.5 倍
在前面三个场景中,InfluxDB 落盘后数据文件规模与 TDengine 非常接近,但是在大数据规模的场景四和场景五中,InfluxDB 落盘后文件占用的磁盘空间显著超过了 TDengine。下图比较了 TDengine 和 InfluxDB 在不同场景下的磁盘空间占用情况:
磁盘空间占用(数值越小越优)从上图可以看到,在前面三个场景中,InfluxDB 落盘后数据文件规模与 TDengine 非常接近(在场景二中,TDengine 的数据落盘规模比 InfluxDB 大了 1%)。但是在场景四和场景五中,InfluxDB 落盘后文件占用的磁盘空间分别是 TDengine 的 4.2 倍和 4.5 倍。
写在最后
基于本次测试报告,我们可以得出结论,在全部的数据场景中,TDengine 写入性能、查询性能均全面超过 InfluxDB。在整个写入过程中,TDengine 在提供更高写入和查询能力的前提下,不论是服务器的 CPU 还是 IO,TDengine 均优于 InfluxDB。即使加上客户端的开销统计,TDengine 在写入开销上也在 InfluxDB 之下。
从实践角度出发,这个报告结果也很好地说明了为什么有很多企业客户在 InfluxDB 和 TDengine 的选型调研中选择了 TDengine,双汇便是其中之一,在《双汇大数据方案选型:从棘手的InfluxDB+Redis到毫秒级查询的TDengine》这篇文章中,便阐述了其选型调研过程的具体思考。
为了方便大家验证测试结果,本测试报告支持运行测试脚本一键复现,欢迎大家在评论区互动交流。同时,你也可以添加 小T vx:tdengine1,加入 TDengine 用户交流群,和更多志同道合的开发者一起探讨数据处理难题。
标签:场景,TDengine,写入,InfluxDB,查询,vs,CPU From: https://www.cnblogs.com/taosdata/p/17329016.html