如果温度系数设的越大,logits 分布变得越平滑,那么对比损失会对所有的负样本一视同仁,导致模型学习没有轻重。如果温度系数设的过小,则模型会越关注特别困难的负样本,但其实那些负样本很可能是潜在的正样本,这样会导致模型很难收敛或者泛化能力差。
标签:系数,模型,样本,学习,参数,对比,温度 From: https://www.cnblogs.com/BlairGrowing/p/17312292.html
如果温度系数设的越大,logits 分布变得越平滑,那么对比损失会对所有的负样本一视同仁,导致模型学习没有轻重。如果温度系数设的过小,则模型会越关注特别困难的负样本,但其实那些负样本很可能是潜在的正样本,这样会导致模型很难收敛或者泛化能力差。
标签:系数,模型,样本,学习,参数,对比,温度 From: https://www.cnblogs.com/BlairGrowing/p/17312292.html