首页 > 其他分享 >论文解析 -- AIOps- A Multivocal Literature Review

论文解析 -- AIOps- A Multivocal Literature Review

时间:2023-04-12 16:15:00浏览次数:45  
标签:Literature 22 -- quality Review work analytics data AIOps

这篇综述是基于A Systematic Mapping Study in AIOps的基础上的补充和更新。

除了论文,还涵盖grey literature (e.g., blog posts, videos, and white papers)  ,所以称Multivocal

Our work will complement the work performed by these authors adding also insights from grey literature as well as more recent works on the topic. 

 

AI是什么?

More precisely, AI is a technological domain with core components such as Machine Learning (ML), Deep Learning, Natural Language Processing (NLP) platforms, predictive Application Programming Interfaces (APIs), and image and speech recognition tools [29]. 

AIOps是什么?

Gartner的定义

"AIOps platforms utilize big data, modern machine learning and other advanced analytics technologies to directly and indirectly enhance IT operations (monitoring, automation and service desk) functions with proactive, personal and dynamic insight.
AIOps platforms enable the concurrent use of multiple data sources, data collection methods, analytical (real-time and deep) technologies, and presentation technologies."  

Forrester 的定义

“AIOps primarily focuses on applying machine learning algorithms to create self-learning and potentially self-healing applications and infrastructure.
A key to analytics, especially predictive analytics, is knowing what insights you’re after.” 

 

研究什么

回答3个问题

RQ1: How does the literature define AIOps?

RQ2: What are the reported benefits of AIOps? 

RQ3: What are the reported challenges of AIOps? 

 

这篇paper的取材更广泛,来自Google Scholar (http://scholar.google.com/) and Google Search (http://www.google.com/) 

 

好处

AIOps is relatively young and far from a mature technology, even so, it already has reported some potential benefits.  

Monitoring IT work. 强大的RCA,快速的troubleshooting
AIOps solutions monitor and analyze the activities performed in an IT environment (both hardware and software), e.g. processor use, application response times, API usage statistics, and memory loads [18, 61].
These analytics and ML capabilities allow AIOps to perform powerful root cause analysis that speeds up troubleshooting and solution to difficult and unusual problems [47, 59]
e.g., if the workload traffic exceeded a normal threshold by a certain percentage, the AIOps platform could add resources to the workload or migrate it to another system or environment much like a human admin does [56]. 

Proactive IT work. 主动运维,Proactive相对的是Reactive,依赖预测技术
AIOps reduces the operational burden of IT systems and facilities with constructive actionable dynamic insight by utilizing big data, machine learning, and other advanced analytics technologies to boost IT operations [47, 58].
This means that AIOps platforms can provide predictive warnings that allow potential issues to be solved by IT teams before they lead to slow-downs or outages.
In fact, a survey from 6000 global IT leaders about AIOps revealed that 74% of the IT professionals want to use proactive monitoring and analytics tools [48].
However, 42% of them are still using monitoring and analytics tools reactively to detect and fix technological challenges and issues. 

 

挑战

Low-quality data.
The performance of the AIOps highly depends on the quality of the data [53].
While major cloud providers capture terabytes and even petabytes of telemetry data every day/month today, there is still a shortage of representative and high-quality data for developing AIOps solutions [22].
It is simply becoming too complex for manual reporting and analysis.
In this scenario, current issues are noisy data, irregular or inadequate reporting frequencies, and even inconsistent naming convention [51, 53].
Besides, essential pieces of information are “unstructured” types of data presenting poor data quality[53].
Therefore, a constant improvement of data quality and quantity is essential, taking into account that AIOps solutions are based on data [22]. 

 

Identifying the use cases. 找到场景怎么使用AIOPS,本身要求对于业务的深入理解
Use cases in the AIOps is the process of analyzing and identifying the challenges and opportunities across the IT operation environment [51].
In addition, building the models to solve these problems and monitoring the performance of the developed model [55].
Companies believe using AI and ML-related features will increase the efficiency of current development within the organization [52].
However, without identifying the underlying issue AIOps implementation might not be effective [51].
As AIOps solutions require analytical thought and adequate comprehension of the whole problem space such as market benefit and constraints, development models and, considerations of system and process integration [22].
Therefore, the organization should start examining underlying systems, applications, and processes from the top level and decide the integration of AIOps to have the greatest leverage [51]. 

 

Traditional engineering approach. 没有成熟的实施方案,落地比较困难,
Successful AIOps implementation requires significant engineering efforts [22].
As it is relatively young and far from mature technology only limited AIOps-engineer are available [22].
Therefore, instead of focusing on building new AIOps initiative, reshaping the existing approach and processes in the organizations is important for the new realities of digital business [54, 55].
These works indicate that traditional approaches do not work in dynamic, elastic environments.
However, ideal practice/principles/design patterns are yet to be established in the industry [53]. 

 

论文有点水,价值这样在附录列了他参考的主要的论文和文档,作为index可以的

 

 

标签:Literature,22,--,quality,Review,work,analytics,data,AIOps
From: https://www.cnblogs.com/fxjwind/p/17310126.html

相关文章

  • 解析566回调函数
    1.这是一个结构体,ConfigCallBack,是结构体别名,*pConfigCallBack是结构体指针  里面是两个函数指针,一个是GetConfigCB,一个是SetConfigCB.很明显是获取和设置配置的函数指针。2.实现    3.定义在类里面,然后类成员函数调用即可,用结构体别名定义 ......
  • 加密木马分析
    前言记一次恶意代码分析教程:《恶意代码分析实战》第九章实验Lab9-1恶意代码样本:https://github.com/mikesiko/PracticalMalwareAnalysis-Labs 实验环境(虚拟环境)WindowsXP:Ollydbg1.1Windows10:IDApro7.7 定位调用main函数地址 IDA函数窗口找到_main,进入函......
  • Carla 自动驾驶仿真平台的安装与配置指南
    简介Carla是一款基于Python编写和UE(虚幻引擎)的开源仿真器,用于模拟自动驾驶车辆在不同场景下的行为和决策。它提供了高度可定制和可扩展的驾驶环境,包括城市、高速公路和农村道路等。Carla还提供了丰富的API和工具,使得研究人员和开发者可以轻松地进行自动驾驶算法的开发和测......
  • 深度学习笔记
    从零训练一个神经网络2023-04-121.读取训练数据#读取数据#这一步类似预处理,将图片裁剪成64*64大小data_dir="./data"#字典语法dict={a:b}#Scale已经被删除,用Resize代替data_transform={x:transforms.Compose([transforms.Resize([64,64]),......
  • Python 环境迁移
    平时用python环境会装一堆依赖,也包括自己的模块,要迁移到陌生环境,得好好处理才行。下面介绍个方法,实践过还可以:总结下步骤:miniconda或conda安装一个python环境,python版本最好和后面新环境一样。condacreate-nszpython=3.6.8在该conda里面装好自己的各种依赖,并跑起来。pi......
  • flask的基础使用
    基于django,flask的自动化运维项目flask入门级教程https://tutorial.helloflask.com/preface/在Linux系统中部署flask并使用准备工作:python3.6版本以上,pycharm或vscode,chrome浏览器,github账号$cdwatchlist$python3--version #查看python3版本Python3.9.10$git-......
  • Flask 06
    Flask:SQLalchemy快速的插入数据sqlalchemy是什么?SQLalchemy是python的SQL工具包和对象关系映射器,可以让应用程序开发人员使用SQL的功能和灵活性。SQLalchemy的理念:SQL数据库与对象集合目标不同,它需要关注更大的数据容量和更高的性能,而对象集合则和数据表或数据行的目标......
  • git-cz 代码提交统一规范配置
    Angular提交规范-GitGuide(zjdoc-gitguide.readthedocs.io)主要插件commitizen:代码提交辅助工具commitlint:代码校验工具husky:githook插件lint-staged:前端文件过滤工具,只检测暂存区代码cz-customizable:自定义提交配置安装步骤1.环境准备git版本,笔者使用......
  • C++第二章课后练习 2-26
    实现一个简单的菜单程序,运行时显示“Menu:A(dd) D(elete)S(ort)Q(ui Select one:”提示用户输入,A表示增加,D表示删除,S表示排序,Q表示退出,输入为A、D、S时分别提示“数据已经增加、删除、排序。”输入为Q时程序结束。(1)要求使用if…else语句进行判断,用break、continue 控制程序流程......
  • 参展动态 | 璞华受邀出席第七届电气化交通前沿技术论坛&展会
     第七届电气化交通前沿技术论坛 4月6日至8日,第七届电气化交通前沿技术论坛在武汉举行。该论坛是国内首个专注电气化交通领域的跨学科、交叉型、开放型论坛,由中国电源学会交通电气化专委会主办,中国船舶集团第七一二研究所、清华大学、中车株洲电力机车研究所联合承办。陈清泉......