568 - Just the Facts
Time limit: 3.000 seconds
The expression N!, read as ``N factorial," denotes the product of the first N positive integers, where N is nonnegative. So, for example,
N | N! |
0 | 1 |
1 | 1 |
2 | 2 |
3 | 6 |
4 | 24 |
5 | 120 |
10 | 3628800 |
For this problem, you are to write a program that can compute the last non-zero digit of any factorial for (
). For example, if your program is asked to compute the last nonzero digit of 5!, your program should produce ``2" because 5! = 120, and 2 is the last nonzero digit of 120.
Input
Input to the program is a series of nonnegative integers not exceeding 10000, each on its own line with no other letters, digits or spaces. For each integer
N
, you should read the value and compute the last nonzero digit of
N
!.
Output
For each integer input, the program should print exactly one line of output. Each line of output should contain the value
N
, right-justified in columns 1 through 5 with leading blanks, not leading zeroes. Columns 6 - 9 must contain ``
->
" (space hyphen greater space). Column 10 must contain the single last non-zero digit of
N
!.
Sample Input
12
26
125
3125
9999
Sample Output
1 -> 1 2 -> 2
26 -> 4
125 -> 8
3125 -> 2
9999 -> 8
方法1:打表。根据数据范围,计算时保留最后5位就行。
方法2:计算N!的素因子分解中5的幂的个数count,然后能被2整除的数要除以2直到达到count
先放上打表的算法:
/*0.016s*/
#include<cstdio>
int a[10001] = {1};/// 0!=1
int main()
{
int i, x;
for (i = 1; i <= 10000; i++)
{
a[i] = a[i - 1] * i;
while (a[i] % 10 == 0) a[i] /= 10;
a[i] %= 100000;///根据数据范围,保留最后5位就行~
}
while (~scanf("%d", &x))
printf("%5d -> %d\n", x, a[x] % 10);
return 0;
}
然后是不打表的算法:
/*0.016s*/
#include<cstdio>
int p[10000];
int main()
{
int n;
while (~scanf("%d", &n))
{
int i, sum = 1, count = 0, tem = 0;
if (n == 0)
{
printf(" 0 -> 1\n");
continue;
}
for (i = 0; i < n; i++) p[i] = i + 1;
for (i = 0; i < n; i++)
while (true)
{
if (p[i] % 5 == 0)
{
p[i] /= 5;
count++;
}
else break;
}
for (i = 0; i < n; i++)
{
while (true)
{
if (p[i] % 2 == 0)
{
p[i] /= 2;
tem++;
}
if (p[i] % 2 || tem == count)
break;
}
if (tem == count)
break;
}
for (i = 0; i < n; i++)
{
sum *= p[i];
sum %= 10;
}
printf("%5d -> %d\n", n, sum);
}
return 0;
}